
1
22
22
22
22
22
23
23
23
23
24
24
24
24
24
24
24
25
25
25
25
25
25
26
26
26
27
27
27
27
27
28
28
28
28
28
28
28
28
29
31
31
32
32
33
34
34
35
35
35

Table of Contents
Table of Contents
Introduction

Organization
What's New in 9.12
What's New in 9.01

UI Refresh
New and improved Data Visualizers
ARM64 support
Settings Manager
Walkthroughs and tutorials for new users
Breaking Changes

What's New in 8.33
What's New in 8.30
What's New in 8.04
What's New in 8.02

Script Debugger
New Serial Terminal
Data Repeater
Improved USB Descriptors Retrieval
Custom View Visualizer
Extended Scripting API

What's New in 7.74
What's New in 7.70
What's New in 7.51

New Features
Fixed Bugs
Memory Usage Optimizations
Supported OSes

What's New in 7.25
Remote Monitoring
Bridge Manager Scripting Object
Updates to Serial Terminal Scripting
Updated Typescript Version

What's New in 7.17
Updated Typescript Version

What's New in 7.13
Serial Device Parameters

What's New in 7.05
Technical Features and Improvements
User Interface Improvements

Monitoring Session Management
Devices Tool Window

Commands
Context Menu

Sessions Tool Window
Session Configuration Window

Selected Sources
Configuration
Time Measurement Mode
Available Processing

Device Monitoring Studio Documentation Table of Contents

1

35
35
36
36
37
37
37
37
37
37
38
38
38
39
39
39
40
40
42
42
42
42
43
43
44
44
44
44
45
45
45
45
45
46
46
46
46
46
48
48
48
50
50
50
50
52
52
53
53
54
54
55
56

Favorites
Selected Processing
Capture Filter
Scripting Support

Device Types
Network

Multi-Source Support
Process Matching
Protocol Definitions

USB
Multi-Source Support
Protocol Definitions

Serial
Multi-Source Support
Protocol Definitions
Serial Session Configuration
Listening Mode

Serial Bridge
Generating Script
Multi-Source Support
Timeout Configuration
Communications Mode

Playback
Starting Playback
Playback Controls
Managing Log Files
Working with Log Files from Other Locations

Multi-Source
Multi-Source Session Creation
Multi-Source Device Identification
Unsupported Data Sources

Remote
Connecting to Remote Server
Remote Monitoring Session
Disconnecting from the Server
Network-related Errors
Server Configuration

Import
Data Processing

Custom View
Custom View Workflow
Visualizer Host

Accessing Fields of a Bound Packet
Advanced Formatting
Visualizer Host

Samples
User Experience

Structure View
Decoded Packet Contents
Raw Data View
Root Protocol
Display Filter

Operation

Device Monitoring Studio Documentation Table of Contents

2

56
57
59
60
61
61
61
61
62
63
63
64
64
67
67
68
69
70
70
70
71
71
72
72
72
72
73
73
73
74
74
74
74
74
75
75
75
75
76
76
77
77
77
77
78
78
78
78
79
79
79
79
79

Raw Data View
Customization
Navigation
Pattern Coloring
Advanced

Selecting Data
Exporting Data
Searching for Data
Go to Offset

Regular Expressions
Capturing Sub-expressions
Usage Tips and Performance Considerations
Regular Expressions Syntax
Examples

URB View
Exporting Data

Packet View
Exporting Data

Statistics
USB
Serial
Network
Advanced

Adjusting Output
Navigating
Capturing the Plot Data

Audio View
Exporting Data

Video View
Exporting Data

HID View
HID View
Report View
Exporting Data

Mass Storage View
Supported Commands
MMC
SPC2
RBC
Exporting Data

Still Image View
Exporting Data

Communications View
Exporting Data

Request View
User Experience
Visual Schemes
Configurable Options
Legacy Visualizer

Console View
Visual Schemes
User Experience
Legacy Visualizer

Device Monitoring Studio Documentation Table of Contents

3

80
80
80
80
81
82
82
83
83
83
83
84
84
84
84
84
84
84
85
85
85
86
86
87
87
87
87
87
88
88
88
88
88
89
89
89
90
90
91
91
91
91
92
92
92
92
93
93
93
94
95
95
95

Data View
Serial Bridge
Exporting Data

MODBUS View
Exporting Data

PPP View
Exporting Data

Line View
Visualizer Positioning

Request View (Legacy)
Exporting Data

Console View (Legacy)
HTTP View

User Experience
Visual Schemes

Data Recording
Log File Structure

Unlimited Mode
Limited Modes

Configuring Data Recording
Data Recording Options
Save to Log

Raw Exporter
Configuring Raw Exporter
Export Filter
Root Protocol

Text Exporter
Configuring Text Exporter
Export Filter
Root Protocol

Advanced
Generic Coloring
Coloring Tab

Working with Schemes
Data Recording (Previous version)

Log File Structure
Configuring Data Recording
Configuring Recording Options

Filtering
Capture Filter

Limitations
Capture Filter Syntax
Examples

Serial Monitoring
USB Monitoring
Network Monitoring

Generic Filtering (Legacy)
Filtering Tab

Working with Schemes
Per-Visualizer Scheme Application

Advanced Features
Network Monitoring

Packet Builder

Device Monitoring Studio Documentation Table of Contents

4

95
96
96
96
96
97
97
97
98
98
98
99
99
99

100
100
100
101
101
102
102
103
103
104
104
104
105
105
105
105
106
106
106
106
106
106
107
107
108
108
108
108
109
109
109
110
110
110
110
110
111
111
112

Packet Editing
Sending Packets
Saving and Loading Packets

USB Monitoring
Device Descriptor

Displayed Information
Parsing Identifiers

Configuration Descriptor
Displayed Information
Parsing Identifiers

Dependent Devices
HID Descriptor
HID Send

Scripting Support
Serial Monitoring

Serial Device Information
Displayed Information
Compatibility Notes

Custom Communication Mode
Custom Splitter Code Structure

Data Repeater
Serial Terminal

Integration with Serial Monitoring
Scripting Support
Session Configuration Window

Generating Script
MODBUS Send

Using MODBUS Send
MODBUS Send with Serial Devices
MODBUS Send with TCP Session (MODBUS TCP Protocol)

MODBUS Session
MODBUS Send with Serial Devices
MODBUS Send over MODBUS TCP Protocol

MODBUS Send Window Rollouts
Generic Rollouts

Result Rollout
User Data Rollout
Parameters Rollout

Request Rollouts
Write Multiple Coils Rollout

Usage
Write Multiple Registers Rollout
Read File Record Rollout

Usage
Write File Record Rollout

Usage
Mask Write Register Rollout

Usage
Read/Write Multiple Registers Rollout

Usage
Response Rollouts

Get Comm Event Log Rollout (response)
Read FIFO Queue Rollout (response)

Device Monitoring Studio Documentation Table of Contents

5

112
112
113
113
113
114
114
115
115
115
116
116
116
117
118
118
118
118
118
119
119
119
119
120
120
120
120
123
123
123
123
125
125
126
126
126
127
127
128
128
129
129
130
131
131
131
131
131
132
132
132
134
134

Read File Record Rollout (response)
Read/Write Multiple Registers Rollout (response)
Report Slave ID Rollout (response)

Protocols
Protocol Binding Workflow
Pre-installed Protocols

Network Monitoring Protocols
USB Monitoring Protocols
Serial Monitoring Protocols

Custom Protocols
Predefined Fields

Common Predefined Identifiers
Serial Monitor and Serial Bridge
USB Monitor
Network Monitor

Protocol Reference
Serial Monitoring Sessions
Serial Bridge Monitoring Sessions
USB Monitoring Sessions
Network Monitoring Sessions

Protocol Editor
Find
Replace
Go to Line
Protocols List Tool Window

Unknown Files
Coloring
Licenses

Tutorials
Adding New Protocol

Creating New Protocol Definition File
Plugging New Protocol to Protocol Chain

Language Reference
Workflow
Tokenization
Comments
Preprocessor

#include directive
Using Absolute and Relative Paths

#pragma once Directive
#define Directive

Defining Constants
Defining Macros
Variadic Macros
#undef Directive

#error Directive
Preprocessor Operators

Stringizing Operator
Token-Pasting Operator

Conditional Compilation Directives
#if, #elif, #else, #endif, defined() operator
#ifdef, #ifndef

Predefined Macros

Device Monitoring Studio Documentation Table of Contents

6

135
135
136
137
137
137
137
138
139
139
139
139
139
139
140
140
141
141
142
142
142
143
143
143
144
144
144
145
145
145
145
146
146
147
147
147
148
148
148
149
149
149
150
150
150
150
151
151
151
152
152
152
156

Built-in Types
Integer Types
Type Modifiers
Floating-Point Types
String Types

Expressions
Operators
Optimization
Immediates

Integer Number
Floating-Point Number
Character Constants
String Constants

References
Limitations

Byte Arrays
Field Access

this Pseudo-Field
array_index Built-In Variable
current_offset Built-In Variable

. Field Access Operator
[] Array Indexing Operator
() Expression Grouping Operator
() Function Call Operator
- Unary Minus Operator
~ Bitwise NOT Operator
& Bitwise AND Operator
^ Bitwise XOR Operator
| Bitwise OR Operator
! Logical NOT Operator
&& Logical AND Operator
|| Logical OR Operator
sizeof() Operator
& Address-Of Operator
* Multiplication Operator
/ Division Operator
% Modulo Division Operator
+ Addition Operator
- Subtraction Operator
<< Left Shift Operator
>> Right Shift Operator
>>> Right Unsigned Shift Operator
< Less Than Operator
<= Less Than or Equal Operator
> Greater Than Operator
>= Greater Than or Equal Operator
== Equality Operator
!= Inequality Operator
?: Conditional Operator

Functions
Internal Functions

Built-In Functions
Examples

Device Monitoring Studio Documentation Table of Contents

7

156
157
157
157
157
157
158
158
159
159
160
161
161
161
162
162
163
164
164
164
165
165
165
165
166
167
168
168
169
169
170
170
171
171
172
172
172
173
173
174
174
175
176
176
176
176
176
176
177
177
177
177
178

Native Functions
Function Scope
Function Optimization

External Functions
Attaching Scripts
Examples
javascript Keyword
External Functions

Statements
if Statement
switch Statement
break Statement
while Statement
for Statement
do…while Statement
return Statement

Scopes
Constants and Constant Arrays

Constant Arrays
Variables and Variable Arrays

Optimizations
Using Variables
Variable Arrays

Enumerations
Using Enumerations

User-Defined Types
Supported Types

Structures
Packing and Alignment
Byte Order
Unions
Case Unions
Case Union Optimization

Forward Declarations
Data Fields

Plain Field
Array Field
Simple and Ordinary Arrays
“Infinite” Arrays
Visualization
Bit Field
Pointer Field

Attributes
Field Attributes
Type Attributes
Field Attributes
noindex Attribute
noautohide Attribute
onread Attribute
format Attribute
description Attribute
color_scheme Attribute
Type Attributes

Device Monitoring Studio Documentation Table of Contents

8

178
178
179
179
179
180
180
181
181
181
182
182
183
186
186
188
188
188
188
189
189
189
189
189
190
190
190
191
191
191
192
193
193
194
194
195
195
195
195
196
196
196
197
197
198
198
199
200
200
200
200
201
201

display Attribute
Typedefs
Directives

$assert Directive
$print Directive
$break_array Directive
$bind Directive
$alert Directive
$revert_to Directive
$shift_by Directive
$remove_to Directive

Format String Syntax
Errors

Scripting
Scripting System Changes
Scripting in User Interface
Working with Scripts

Running Scripts
Persistence
Command Line Support

Debugging Scripts
Break State
Stepping through the Code

What Can I do with Scripting?
Event Binding
Scripting Site Object

IScriptingSite Interface
IScriptingSite Methods

alert
input
async
cancelAsync
loadTextFile
delay

Monitoring Object
Automatic Generation of Session Configuration Script
IHost Interface

IHost Properties
sessions

IHost Methods
createSession
createSession
createSession
createSession
createSession
createSession
createSession

Monitoring Session Object
Adding Devices and Configuring Session
Adding Visualizers
Running Monitoring Session
ISession Interface

ISession Properties

Device Monitoring Studio Documentation Table of Contents

9

201
202
202
203
203
203
204
204
205
205
206
206
207
207
208
208
209
209
210
211
211
211
211
212
213
213
214
214
215
215
215
215
216
216
216
217
217
217
217
217
217
218
218
218
218
219
219
219
220
220
220
220
220

state
precise
visualizers

ISession Methods
addDevice
addDevice
addDevice
addDevice
addDevice
addDevice
addDevice
addVisualizer
addVisualizer
addVisualizer
addVisualizer
addVisualizer
addVisualizer
addVisualizer
start
stop
pause
resume
setCaptureFilter
configureSource
configureSource
configureSource
configureSource
configureSource
saveToLog

IVisualizer Interface
IVisualizer Properties

name
IVisualizer Methods

equals
remove

Serial Namespace
Serial.CommunicationsMode Enumeration

Playback Namespace
Playback.Config Interface

Declaration
Config Properties
range
scale

Playback.Range Interface
Range Properties
from
to

Playback.Scale Enumeration
Session Namespace

Session.State Enumeration
Multi Namespace

Multi.Color Interface
Color Properties

Device Monitoring Studio Documentation Table of Contents

10

221
221
221
221
222
222
222
222
222
222
223
223
223
223
224
224
224
224
224
225
225
225
226
226
226
226
227
227
227
227
228
228
228
228
228
228
229
229
229
229
229
230
230
230
230
230
230
230
231
231
231
232
232

r
g
b
a

VisConfig Namespace
VisConfig.Exporter Interface

Declaration
Exporter Properties
path
overwrite
nocache

VisConfig.Filter Interface
Declaration
Filter Properties
name
expression

VisConfig.Recorder Interface
VisConfig.Recorder Properties
path
maxSize
maxTimeInSeconds
maxFiles
overwrite

DataRecording Namespace
DataRecording.IRecordingVisualizer Interface

Declaration
IRecordingVisualizer Methods
endStream
newStream

DataRecording.IRecordingVisualizer2 Interface
IRecordingVisualizer2 Properties
totalAmount
paused

Exporters Namespace
Exporters.IExporterVisualizer Interface

Declaration
IExporterVisualizer Methods
pause
resume

Serial Terminal Objects
Serial Terminal Object
Device Configuration Object
Predefined Flow Control Object
Reference

ITerminalManager Interface
Declaration
ITerminalManager Properties
sessions
ITerminalManager Methods
closeAllSessions
createSession

IPredefinedFlowControl Interface
Declaration

Device Monitoring Studio Documentation Table of Contents

11

232
232
233
233
233
233
234
234
234
234
235
235
235
236
236
236
236
236
237
237
237
238
238
238
239
240
240
240
240
241
241
241
241
242
242
242
242
242
242
242
242
243
243
244
244
244
245
245
245
245
246
246
246

IPredefinedFlowControl Properties
none
software
hardware

IFlowControl Interface
Declaration
IFlowControl Properties
outXonXoff
inXonXoff
outCtsFlow
outDsrFlow
dsrSensitivity
dtrControl
rtsControl

IDeviceConfig Interface
Declaration
IDeviceConfig Properties
baudRate
dataBits
stopBits
parity
flowControl
timeouts

ISerialTimeouts Interface
Declaration
ISerialTimeouts Properties
readIntervalTimeout
readTotalTimeoutMultiplier
readTotalTimeoutConstant
writeTotalTimeoutMultiplier
writeTotalTimeoutConstant

Serial Terminal Session Object
Configuring Terminal Session
Starting and Stopping Terminal Session
Sending Data
Receiving Data
Events
Flow Control Emulation
Reference

ITerminalSession Interface
Declaration
ITerminalSession Properties
friendlyName
portName
config
rts
dtr
cts
dsr
dcd
ring
visible
ITerminalSession Methods

Device Monitoring Studio Documentation Table of Contents

12

246
247
247
247
248
248
248
249
249
249
250
251
251
251
252
252
252
253
253
253
253
254
254
254
254
255
255
255
256
256
257
257
257
258
258
258
258
259
259
260
260
260
261
261
261
261
261
261
261
262
262
262
262

xon
xoff
breakOn
breakOff
start
stop
send
send
send
sendAs
sendFile
receive
ITerminalSession Events
sent
received

Terminal Namespace
Terminal.DataBits Enumeration
Terminal.Parity Enumeration
Terminal.SendAs Enumeration
Terminal.StopBits Enumeration
Terminal.DTRControl Enumeration
Terminal.RTSControl Enumeration

Network Manager Object
Reference

INetworkManager Interface
INetworkManager Methods
createTcpSession
createUdpSession
createTcpListener
getSessions

Network Namespace
Network.SessionType Enumeration

INetworkSession Interface
INetworkSession Methods
connect
stop
send
send
send
receive

TCP Session Object
Asynchronous API
Connecting a TCP Session
Sending and Receiving Data
ITcpSession Interface

UDP Session Object
Asynchronous API
Starting and Stopping UDP Session
Sending and Receiving Data
IUdpSession Interface

IUdpSession Methods
bind

TCP Listener Object

Device Monitoring Studio Documentation Table of Contents

13

262
263
263
263
264
264
264
264
265
265
265
265
265
266
266
267
268
268
268
269
269
270
270
270
271
272
272
273
273
274
274
275
275
276
276
277
277
278
278
278
279
279
280
280
281
281
281
282
283
283
284
284
285

ITcpListener Interface
ITcpListener Methods

listen
close

MODBUS Manager Object
IModbusManager Interface

IModbusManager Methods
createBuilder

MODBUS Builder Object
Creating MODBUS Builder Object
Reference

IModbusBuilder Interface
Declaration
IModbusBuilder Methods
error
requestDiagnostics
requestGetCommEventCounter
requestGetCommEventLog
requestMaskWriteRegister
requestReadCoils
requestReadDiscreteInputs
requestReadExceptionStatus
requestReadFIFOQueue
requestReadFileRecord
requestReadHoldingRegisters
requestReadInputRegisters
requestReadWriteMultipleRegisters
requestReportSlaveID
requestUserFunction
requestWriteFileRecord
requestWriteMultipleCoils
requestWriteMultipleRegisters
requestWriteSingleCoil
requestWriteSingleRegister
responseDiagnostics
responseGetCommEventCounter
responseGetCommEventLog
responseMaskWriteRegister
responseReadCoilStatus
responseReadDiscreteInputs
responseReadExceptionStatus
responseReadFIFOQueue
responseReadFileRecord
responseReadHoldingRegisters
responseReadInputRegisters
responseReadWriteRegisters
responseReportSlaveID
responseWriteFileRecord
responseWriteMultipleCoils
responseWriteMultipleRegisters
responseWriteSingleCoil
responseWriteSingleRegister

ReadFileRequest Interface

Device Monitoring Studio Documentation Table of Contents

14

285
285
285
285
286
286
286
286
287
287
287
287
288
288
288
289
289
289
289
289
289
290
290
290
291
291
292
292
293
293
293
293
293
293
294
295
295
295
296
296
296
296
297
297
297
297
297
297
298
298
298
299
299

ReadFileRequest Properties
referenceType
fileNumber
recordNumber
registerLength

ReadFileResponse Interface
ReadFileResponse Properties
referenceType
data

FileRecord Interface
FileRecord Properties
referenceType
fileNumber
recordNumber
records

Remote Connection Manager Object
Events
IRemoteHost Interface

Declaration
IRemoteHost Properties

connections
IRemoteHost Methods

connectServer
disconnectServer

IRemoteHost Events
connected
disconnected

Bridge Manager Object
IBridgeHost Interface

Declaration
IBridgeHost Properties

bridges
IBridgeHost Methods

create
saveConfiguration
loadConfiguration

Bridge Object
IBridge Interface

Declaration
IBridge Properties

firstDevice
secondDevice
name

IBridge Methods
destroy

File Manager Object
Reference

IFileManager Interface
Declaration
IFileManager Methods
createFile
deleteFile
enumFiles

Device Monitoring Studio Documentation Table of Contents

15

300
300
301
301
302
302
302
303
303
303
303
303
304
304
304
304
305
305
306
306
306
307
307
307
307
308
308
308
309
309
310
310
310
310
311
311
311
311
312
312
312
313
313
313
314
314
314
314
314
314
315
315
315

copyFile
moveFile
createFolder
deleteFolder

File Namespace
File.OpenMode Enumeration
File.Access Enumeration
File.Share Enumeration

File Object
IFile Interface

Declaration
IFile Properties

currentPosition
size
isOpen

IFile Methods
read
write
setEnd
close

HID Manager Object
IHIDManager Interface

Declaration
IHIDManager Properties

devices
sessions

IHIDManager Methods
createSession
createSession
createSession
closeAllSessions

HID Device Object
IHIDDevice Interface

Declaration
IHIDDevice Properties

deviceKey
vendorId
productId
serialNumber
releaseNumber
manufacturer
product
interfaceNumber
caps

HID Session Object
Reference

HID Namespace
HID.ReportType Enumeration

IHIDSession Interface
Declaration
IHIDSession Properties
vendorId
productId

Device Monitoring Studio Documentation Table of Contents

16

316
316
316
316
317
317
317
318
318
319
319
319
320
320
321
321
322
322
323
323
323
323
324
324
325
325
326
326
327
328
328
329
329
330
330
330
331
331
332
333
333
334
334
334
335
335
335
335
336
336
336
336
337

device
inputBuffersCount
IHIDSession Methods
start
stop
setFeature
getFeature
send
send
send
receive
getReport
setReport
getLinkCollectionNodes
getValueCaps
getSpecificValueCaps
getButtonCaps
getSpecificButtonCaps
createBuilder
createParser

IHIDParser Interface
Declaration
IHIDParser Methods
getData
getUsages
getUsagesEx
getButtons
getButtonsEx
getUsageValue
getScaledUsageValue
getUsageValueArray

IHIDBuilder Interface
Declaration
IHIDBuilder Methods
setData
setUsageValue
setScaledUsageValue
setUsageValueArray
setUsages
setButtons
unsetUsages
unsetButtons

IHIDCaps Interface
Declaration
IHIDCaps Properties
usage
usagePage
inputReportLength
outputReportLength
featureReportLength

IHIDRange Interface
Declaration
IHIDRange Properties

Device Monitoring Studio Documentation Table of Contents

17

337
337
337
337
338
338
338
338
339
339
339
339
340
340
340
341
341
341
342
342
342
343
343
343
343
344
344
344
345
345
345
345
345
346
346
346
347
347
347
348
348
348
348
348
349
349
349
349
349
350
350
350
351

min
max

IHIDValue Interface
Declaration
IHIDValue Properties
isRange
value

IHIDValueCaps Interface
Declaration
IHIDValueCaps Properties
usagePage
reportID
isAlias
bitField
linkCollection
linkUsage
linkUsagePage
isAbsolute
hasNull
bitSize
reportCount
unitsExp
units
logical
physical
usage
string
designator
dataIndex

IHIDNode Interface
Declaration
IHIDNode Properties
linkUsage
linkUsagePage
parentIndex
numberOfChildren
nextSibling
firstChild
collectionType
isAlias

IHIDData Interface
Declaration
IHIDData Properties
index
data

IHIDButtonCaps Interface
Declaration
IHIDButtonCaps Properties
usagePage
reportID
isAlias
bitField
linkCollection

Device Monitoring Studio Documentation Table of Contents

18

351
351
352
352
352
353
353
353
353
354
354
354
354
354
354
357
357
358
358
358
358
359
359
359
359
360
360
360
361
361
363
363
364
364
365
365
367
367
367
367
367
367
367
367
367
368
368
368
368
369
370
370
370

linkUsage
linkUsagePage
isAbsolute
usage
string
designator
dataIndex

IHIDUsageAndPage Interface
Declaration
IHIDUsageAndPage Properties
usagePage
usage

TypeScript
Syntax Check
License

Monaco Editor
License

Remote Monitoring
Network Setup
Server Deployment
Connect Server Window
Device Monitoring Studio Server

Downloading Device Monitoring Studio Server
Network Configuration
Interoperability with Device Monitoring Studio
Installation
Server Security

Anonymous Access
Token-Based Access

Configuration Utility
Token-Based Access Control Editor

Server Configuration File Reference
JSON File Structure
Endpoint Syntax
Server Configuration

Server Command-Line Reference
User Interface

Notification Windows
Available Notifications
Next Connected Device (Serial)
Next Connected Device (USB)
Line View Notification
New Terminal Session
Continue Playback
Statistics Special Mode
Statistics Static Line
Fast data entering (MODBUS Send window)

Commands
Menus
Toolbars
Keyboard Shortcuts
Tool Windows

Location

Device Monitoring Studio Documentation Table of Contents

19

370
371
372
373
373
373
374
374
375
375
375
376
376
376
376
376
377
377
377
377
377
377
378
378
378
379
379
380
380
380
380
380
381
381
381
381
382
383
383
384

Floating Tool Window
Docked Tool Window
Auto-Hidden Tool Windows

Tool Window Visibility
Window Switching
Workspace

Working with Workspaces
Global Switch

Configuration
General Tab

General Group
Notifications Group
Statistics Group
Raw Data View
Network Packet View
MODBUS
Console View
Scripting
Serial Terminal
USB Audio Visualizer
USB Video Visualizer
PPP View
Auto-Hide

Multi-Source Device Colors Tab
Recording/Playback Tab
Data Processing Tab

Configuring Device Monitoring Studio Data Processing Policy
Temporary Storage
High-Performance Mode

Commands Tab
Creating New Toolbar
Deleting Toolbar
Configuring a Toolbar
Other Options

Keyboard Tab
Keyboard Map

Proxy Tab
Server Settings
Proxy Server Authentication
Security Considerations

Device Monitoring Studio Documentation Table of Contents

20

Introduction

Device Monitoring Studio Documentation Table of Contents

21

Introduction
Device Monitoring Studio is an application with rich device monitoring capabilities. It allows you to
monitor the different kind of devices attached to local or remote computer. It supports monitoring the
serial ports and devices (built-in, PnP and virtual), Universal Serial Bus (USB) devices and network
connections. In addition, it makes monitoring the connection between two serial devices possible by
creating a virtual bridge between them (serial bridging).

Organization

This documentation is divided into the following sections:

Monitoring Session Management
This section briefly describes Device Monitoring Studio user interface elements that help you
manage devices, start, stop and configure monitoring sessions.

Device Types
This section describes all supported device types, including physical (such as serial, USB or network)
or virtual (like Serial Bridge and Playback) devices.

Data Processing
This section provides detailed documentation for every data processing module. Some of the
modules are specific to one or more device types, while others support all device types.

Filtering
This section describes the advanced filtering capabilities provided by Device Monitoring Studio.

Advanced Features
This section provides descriptions for additional functionality available for each DMS module.

User Interface
User Interface section gives detailed description of each user interface element.

Configuration
Configuration section provides help for using centralized Device Monitoring Studio configuration
mechanism, which is opened by using the Tools » Settings… command.

What's New in 9.12
Starting from version 9.12, Device Monitoring Studio supports monitoring of remote serial and USB
devices1.

A separate package, called Device Monitoring Studio Server needs to be installed on a remote computer.
In addition, the server is also included as an optional component in Device Monitoring Studio installer. It
provides with a fast and simple way to share local serial and USB devices and allow a remote Device
Monitoring Studio instance to monitor them.

Remote monitoring sessions provide the same set of features as local monitoring sessions.

1. This feature is not available in all product editions.↩

What's New in 9.01
This is a major version update. This topic lists new key features as well as improvements and updates in
existing Device Monitoring Studio features.

UI Refresh

Device Monitoring Studio Documentation Introduction

22

Version 9 comes with a revamped user interface that offers a sleek and modern look. These
improvements to the user interface make Device Monitoring Studio more visually appealing, user-
friendly, and adaptable to various device configurations and preferences. Here are the key
improvements:

New beautiful vector icon set
The new icon set is designed to be crisp and clear on any screen resolution, ensuring a consistent
and visually appealing experience across all devices.

Full support for high-DPI monitors
The software now automatically adjusts its interface elements to provide optimal clarity and
readability on high-resolution displays.

Support for color themes for all interface elements
Users can now customize the look and feel of Device Monitoring Studio by adjusting colors of any
visual element. This allows them to personalize their experience and make the software more
visually appealing.

Dark theme support
The updated version of Device Monitoring Studio offers full support for Windows 10/11 dark theme,
providing a more comfortable and energy-efficient experience for users, especially in low-light
environments. This feature helps reduce eye strain and improves visibility of interface elements.

Resizable windows
The new version of Device Monitoring Studio allows users to resize most dialog boxes according to
their preferences. This feature provides greater flexibility and customization, allowing users to adjust
the interface to suit their needs. In addition, some dialog boxes have been redesigned to improve
the user experience, making them more intuitive and easier to navigate.

Localization support
Device Monitoring Studio now fully supports localization. Initial release comes with support for
English, Spanish, German, French, Italian and Russian languages. New language packs may be
created with a free Language Editor.

New and improved Data Visualizers

Almost all existing data visualizers have been improved in a number of ways, with better functionality
and look. A number of new data visualizers (all based on Custom View technology) have been added,
including USB Mass Storage View, Still Image View, Communication View, Audio View and Video View.

ARM64 support

Device Monitoring Studio now offers full support for ARM64 architecture. This means that the software
can now be seamlessly run on devices powered by ARM64 processors, ensuring optimal performance
and compatibility. With this new feature, users can enjoy the benefits of using it on a wider range of
devices

Settings Manager

New version introduces a new Settings Manager with centralized storage for all application settings. By
default, these settings are stored in the Registry, but they can be configured to be stored in a file in the
file system. This file can be placed in a shared folder or OneDrive or a similar folder. This new feature
allows users to easily manage and access their settings from any device, making it more convenient for
them to use Device Monitoring Studio from different devices.

Walkthroughs and tutorials for new users

Device Monitoring Studio Documentation Introduction

23

Device Monitoring Studio now shows a few brief walkthroughs and tutorials for novice users.
Experienced users may easily turn this off.

Breaking Changes

This version drops support for Windows 7, Windows 8 and Windows 8.1 operating systems (and
corresponding server versions). It also drops support for 32-bit OS versions. Only 64-bit (x86-64 and
ARM64) Windows 10 or later versions are now supported.
DMSLOG7 log file format is no longer supported. Device Monitoring Studio 9.x does not save or
load these log files.

What's New in 8.33
This release improves Structure View data visualizer. In previous versions, packet fields were not
displayed until the user expanded the packet in the Structure View data visualizer. Starting from version
8.33, Structure View uses its standard field visualization algorithm to display top-level packet data. This
includes, for example, the evaluation of the display attribute for a top-level or sub-level protocol.

Additionally, the new built-in visualize() function is available to protocol definition code. It provides a
way to invoke standard field visualization algorithm for the protocol definition code.

Network and serial protocols have been updated to take advantage of the new feature. Now the user will
be able to see the type and basic fields of each network or serial packet without expanding it in the
Structure View.

What's New in 8.30
This release introduces the updated Data Recording component. New logging format allows the user to
specify optional size or duration limits and split the resulting log file into several part files.

This release also brings an improved Playback Settings window.

What's New in 8.04
This release introduces the new component: HID Send, which may be used to directly control the HID
device by querying its parameters and sending reports. The new component may also be fully controlled
from scripts.

What's New in 8.02
Script Debugger

Increased support for scripting in Device Monitoring Studio calls for better tools. The built-in script
editor with auto-completion support and built-in documentation is now accompanied by a script
debugger.

The user may now place breakpoints, and perform stepping while debugging his scripts. The Watch tool
window and Stack Trace tool window provide the detailed information about the script execution state.

See the Script Debugger section for more information.

New Serial Terminal

The Serial Terminal module has been redesigned and rewritten from scratch. It now provides richer API,
better performance and stability and integrates with a Serial Source. This integration allows for
“listening” mode monitoring sessions - a configuration when there is no active controlling application
listening on the port.

Device Monitoring Studio Documentation Introduction

24

In addition, terminal window is now integrated better into the application frame, is more responsive and
provide better overall experience.

Data Repeater

This component, which may be attached to a serial or playback monitoring session, allows redirection of
monitored traffic to one or more serial ports.

See the Data Repeater section for more information.

Improved USB Descriptors Retrieval

Device Monitoring Studio now uses alternative methods to retrieve USB device descriptors if standard
methods fail.

Custom View Visualizer

The Custom View data visualizer is now out of beta. It has been redesigned and is now backed by
TypeScript (not internal protocol definition language). Serial's Request View and Console View have been
rewritten using Custom View.

Custom View data visualizer allows the user to consume the information produced by protocol binding
module and display parsed data with rich visualization capabilities.

Extended Scripting API

This release extends the list of components that may be controlled from TypeScript (JavaScript) scripts
executing inside the Device Monitoring Studio:

File Manager object.
TCP Session, UDP Session and TCP Listener objects.
Updated Serial Terminal object.
New MODBUS Builder Object.

What's New in 7.74
This release adds three new directives to the protocol definition language: $revert_to, $shift_by and
$remove_to, which allows having more advanced look-ahead in protocol definitions.

It also adds USB descriptor parsing to Structure View data visualizer and Text Exporter data processing
module. New predefined methods are added to USB: usb_get_vendor_name and usb_get_model_name.

What's New in 7.70
This release brings the following:

1. Starting from this version, the minimum supported OS is Windows 7. Application no longer
supports Windows XP and Windows Vista. The minimum supported server OS is Windows Server
2008 R2.

2. TypeScript is now always supported, the requirement to have Internet Explorer 11 installed is
removed.

3. New script editor is introduced with support for auto-completion and error highlighting.

4. Custom serial session type is implemented.

5. User interface elements now look correctly on high-definition displays.

Device Monitoring Studio Documentation Introduction

25

6. Updated scripting engine with support for ES6. This allowed us to improve various APIs provided by
Device Monitoring Studio components. For example, all methods that worked with Array objects
now also work with typed arrays, array buffers and data views.

What's New in 7.51
This release is dedicated mostly to polishing various application features. It improves a lot of existing
components by fixing bugs and memory leaks. It also significantly reduces application memory
requirements and works around memory exhaustion issues, particularly on 32-bit systems.

New Features

This release introduces high-precision session time measurement mode. As of 7.51, this mode is
supported by USB, Serial and Network modules. When enabled (per-session), Device Monitoring Studio
uses high-precision system timer for packet time-stamping. This mode is enabled by default if Device
Monitoring Studio is installed on Windows 7 or later.

Starting from 7.51, various device information is automatically saved to a log file if the Data Recording
module is added to a monitoring session. This includes the Serial Device Information for serial devices
and all kinds of USB descriptors for USB devices (Device Descriptor, Configuration Descriptor and HID
Descriptor tool windows).

Raw Data View data visualizer now supports additional packet coloring mode. Now it allows the user to
choose one of three modes: no coloring, packet interlacing (coloring odd and even packets) and
read/write coloring (coloring read and write packets).

When resulting log file is later selected in the Devices tool window, corresponding tool windows are
updated with saved information.

In addition, built-in MODBUS protocol now automatically selects RTU or ASCII mode. This works
automatically in Structure View and in filters and does not affect MODBUS View data visualizer.

Fixed Bugs

This release fixes over 200 different bugs, including crashes. A special attention has been paid to the
following:

Monitoring session startup and shutdown-related issues, including crashes and hangs. This includes
configuring and starting monitoring session, adding or removing data processing modules to
running session and stopping monitoring session, as well as changing session's Capture Filter or
visualizers' Display Filter for a running session.
Capture and display filter performance.
Protocol binding performance.
Issues with various data visualizers. Almost every data visualizer has been optimized or fixed in some
way.
Workspace saving and loading issues.

Here is a short list of most remarkable fixed bugs:

Line View
Line View had a bug that prevented it from working. Now Line View works correctly when
monitoring serial modems.

Correct emergency session termination
When resources are low, Device Monitoring Studio is now more robust in stopping affected high-
data rate monitoring sessions, or session processing modules. This mostly affects 32-bit systems or
systems with slow secondary storage.

Device Monitoring Studio Documentation Introduction

26

Log file repairing
Device Monitoring Studio has always repaired damaged log files on startup. If log file was large, it
introduced a startup delay (only splash screen was visible and application appeared to be hanging).
Now a progress bar is shown to tell the user that application is alive.

Serial communication mode
A number of various bugs related to support for serial communication mode in Serial and Serial
Bridge modules have been fixed. This includes saving the mode into the workspace or log file.

Reading USB device descriptors
It was impossible to read USB device descriptors on some systems. The problem seems to be related
to incorrect system configuration, damaged host controller driver installation or various security
issues. Device Monitoring Studio now has an alternative way to read descriptors if previous method
fails. This improves monitoring experience for USB devices on affected systems.

Operating with limited processing resources
During monitoring Device Monitoring Studio uses available disk space as configured in the Data
Processing Tab (invoked by Tools » Settings menu command). We have fixed a number of bugs
related to Device Monitoring Studio operation under limited settings (like 1% on a single disk and
0% on all others).

“Exporter” data processing modules: Raw Exporter, Text Exporter and Data Recording
A number of bugs have been fixed in exporter modules. CPU and memory usage have been
carefully profiled and optimized.

Memory Usage Optimizations

This release also brings improvements to Device Monitoring Studio memory usage strategies. All critical
paths have been carefully analyzed and profiled, resulting in memory usage savings of up to 10 times in
several places. Application is now much more robust on systems with lower amount of RAM. In addition,
when installed on 32-bit operating systems, application is now capable of sustaining much higher data
rates during monitoring. Reduced memory demands now also allow to start “heavier” monitoring
sessions - sessions with more data processing modules, complex custom protocols and filter expressions.

Supported OSes

This release drops support for 64-bit Windows XP and Windows Server 2003. 32-bit versions of these
operating systems are still supported.

Remote Source now requires at least Windows Vista and will not be installed on Windows XP or
Windows Server 2003.

Future releases will drop support for Windows XP and Windows Server 2003 entirely.

What's New in 7.25
Remote Monitoring

Starting from version 7.25, active remote sessions are no longer automatically terminated when
connection to remote server breaks. Instead, Device Monitoring Studio starts trying to automatically
reconnect to remote server and resume monitoring.

New global object is available for scripting: Remote Connection Manager Object.

New parameter (remote server name) has been added to IHost.createSession and to ISession.addDevice
function overloads. Therefore, it is now possible to start remote monitoring sessions from scripting code.

Bridge Manager Scripting Object

Device Monitoring Studio Documentation Introduction

27

Bridge Manager object is now available. It allows user code to create and manage serial bridges through
its methods and properties. Created bridges may be manipulated through the IBridge interface.

In addition, starting from version 7.25, it is possible to start serial bridge monitoring sessions from
scripting code.

Updates to Serial Terminal Scripting

Serial Terminal Session Object adds the following property: ITerminalSession.flowControl to query or set
terminal session's flow control mode.

IFlowControl interface and Predefined Flow Control Object have been added.

Updated Typescript Version

This version updates the included TypeScript compiler to version 1.5.

What's New in 7.17
Version 7.17 adds support for MODBUS TCP protocol. There is a protocol definition file for it and
support for building and sending MODBUS TCP packets using MODBUS Send.

In addition, the following two objects are available for user scripts: TCP Manager Object and TCP Session
Object. TCP Session Object may be used instead of Serial Terminal Session Object in a call to
**IModbusManager.createSession to create a MODBUS Send Session Object over MODBUS TCP
protocol. (Deprecated).

Updated Typescript Version

Version 7.13 introduced the ability to write user scripts in TypeScript language (superset of JavaScript)
with strong type checking, parameter validation and so on. This version also updates the included
TypeScript compiler to version 1.4.

What's New in 7.13
Version 7.13 greatly improves built-in Scripting support. Starting from this version, scripting support is
available for all modules and new scripting object, Monitoring Object, is introduced. By calling methods
of this object, user scripts may create, configure and start monitoring sessions.

In addition, a convenient script file editor is added to Device Monitoring Studio with syntax coloring,
Undo/Redo support and advanced error reporting.

From this version, user scripts may now be written in TypeScript, while support for VBScript has been
discontinued. TypeScript usage provides better error checking and parameter validation.

Serial Device Parameters

Support for displaying current session parameters, such as Baud Rate, Data Bits, Stop Bits and Parity has
been added to Sessions Tool Window for serial sessions.

What's New in 7.05
Technical Features and Improvements

Multi-source Monitoring
New version supports joining monitored data from multiple sources of the same type into a single
monitoring session. Now it is possible to monitor two or more serial ports, USB devices or network
adapters. Device Monitoring Studio makes sure packets are correctly sorted and presented through

Device Monitoring Studio Documentation Introduction

28

a number of supported data visualizers. Data logging also supports multi-source sessions.
Remote Monitoring

DMS 7 supports monitoring USB and serial devices connected to remote servers. A single client may
monitor several servers and a single server may be monitored by multiple clients. A separate server
installation is provided. It includes a server access module, serial and USB monitoring modules,
administration and management module and documentation. A server is managed using the MMC
Snap-In or from Windows Scripting Host or PowerShell.

Windows 8 Support
DMS 7 officially supports Windows 8 and Windows Server 2012.

USB 3.0 Support
USB Monitor introduces support for USB 3.0 host controllers and devices.

Built-In and Custom Protocol Parsing
DMS 7 extends protocol parsing support for all monitoring modules: network, USB and serial. In
addition, this version has new implementation of protocol parsing, which is more flexible and
greatly improves performance.

New Data Processing Category
New processing category is introduced: data exporters. These components process monitored data
in some way, but do not produce any visible output on the screen. Data recording module now
belongs to this category. Other data exporters are Raw Exporter and Text Exporter. Both these
exporters are capable of using built-in or custom protocol definitions to parse monitoring data
before exporting.

Parallel Processing
New version of Device Monitoring Studio utilizes multiple cores for more responsive monitoring
session operation. It allows the user to perform real-time monitoring of 1 Gb network transfer
without packet loss and slowdowns while having such “heavy” processing like Capture Filter and
Display Filter configured for a monitoring session.

User Interface Improvements

Devices Tool Window
New tool window that displays all devices the user can monitor in a single customizable view. For
each supported device, its image, type and current state are displayed. The user may start, stop and
configure monitoring sessions, view device properties, restart and rename devices.
This tool window allows you to create and configure Serial Bridges. Device Monitoring Studio also
puts log files into corresponding places in this device tree.

Session Configuration Window
New Session Configuration window greatly simplifies session creation and modification. There is a
list of configured sources at the top of the window. Below are optional device configuration
settings, buttons to add more devices and remove existing ones.
Depending on the type and number of configured sources, a list of available processing modules is
populated. It is divided into two main categories: visualizers and exporters.
Double-click on the processing module to add it to the current session. Some of modules support
configuration. Customized processing modules may be saved for future use.
Finally, the user specifies a capture filter, a generic (protocol-based) conditional expression used to
filter out specific monitored packets.

Sessions Tool Window
New tool window lists all currently running sessions and their properties. It allows you to close data
visualizers, add new data processing modules, pause, resume or stop sessions. It also allows you to

Device Monitoring Studio Documentation Introduction

29

change data processing modules configuration conveniently. For example, for data recording, the
current log file size is displayed. By clicking “End Stream”, the user ends the current stream and
starts a new one.

Protocol-Based Data Visualizers
Structure View data visualizer for USB, Serial and Network with additional filtering (Display Filter)
and ability to specify root protocol.

Automatic Layout Loading
DMS 7 automatically loads separate tool window and command layout when monitoring session is
started. Thus, until a session is started, a layout, which simplifies device discovery and information
retrieval is used. After the session is started, another layout is automatically loaded streamlining
monitoring session usage. Both layouts may be customized by the user.

Global Configuration Switch
Device Monitoring Studio provides you with a global switch to turn it into Serial Monitor, USB
Monitor or Network Monitor. This switch may be used in combo installations to temporary hide
unneeded components.

Device Monitoring Studio Documentation Introduction

30

Monitoring Session Management
Devices Tool Window
This tool window is a central location where all supported devices are found.

It has three levels:

1. Computer. This can be either “My Computer” or the name or address of a remote server.
2. Device type. One of three supported device types: Network, Serial or USB. Some of these types may

be missing if corresponding monitoring module is not installed.
3. Device category. Category further splits the device type into sub-types. For example, there may be

“Human Interface Devices” category for USB or “Ports” category for Serial.

Supported devices are listed below the Device Category level. This includes physical devices, virtual
devices such as “Next connected device” or serial bridge, discovered log files and so on.

You may use mouse or keyboard to select a single device. This essentially makes it the “current” device
and causes any compatible tool window to update its contents. For example, if you click on a “USB Input
Device”, Device Descriptor tool window will update to show you USB device descriptor of the selected
device. Each device type usually updates only one subset of informational tool windows.

Detailed information is provided in the corresponding documentation section.

Devices that are currently being monitored are marked with an animated gear.

Devices Tool Window automatically updates the list of devices whenever new supported device is
connected to the computer or an existing device is disconnected from it.

Device Monitoring Studio Documentation Monitoring Session Management

31

In addition to displaying the list of supported devices, Devices tool window provides you with following
features:

Commands

This section describes commands on the Devices Tool Window Toolbar. Note that some of the
commands may be missing in your installation, depending on the list of installed modules.

Show or Hide Categories
Allows you to turn displaying of different device types on or off. Network, USB and Serial are main
filter categories, while Playback and Serial Bridge are sub-categories. Turning the main category off
hides all devices of this category, including the ones belonging to one of the sub-categories. Thus, if
you turn Serial off, it will hide all serial devices, including bridges and serial log files. However, if you
turn Serial Bridge category off without turning Serial category off, it will only hide serial bridges.

Start Monitoring…
Opens the Session Configuration window and allows you to start new monitoring session. Double-
clicking on a device in a tree does the same.

Stop Monitoring
Closes the monitoring session to which the currently selected device belongs.

Configure Playback Path…
Opens the corresponding settings page where you can configure default log file folder location.

Create New Bridge…
Starts creation of new serial bridge.

Create Virtual Serial Port…
Opens HHD Software Free Virtual Serial Ports application that allows you to create different kinds of
virtual serial ports. These ports are fully supported by Device Monitoring Studio.

Connect to New Server…
Allows you to connect to Device Monitoring Studio Server running on another computer. This
effectively “adds” all supported devices on the server to the tree and allows you to monitor them
remotely.

Context Menu

In addition to generic commands, each device type and sometimes category may provide you with
extended list of commands. Right-click on the item in a device tree to bring up the list of supported
commands.

The Rename… command, supported for most of the devices allows you to specify a custom name for a
device. Use this ability to distinguish between similar devices. For example, a mouse and UPS both may
be detected as “Human Interface Device”. Use the Rename command to name them “Mouse” and “UPS”
correspondingly.

Device Monitoring Studio remembers names you give and automatically uses them next time you start
the application or reconnect devices.

Properties… command, also present on most devices, opens the Windows Device Manager's Device
Properties window, allowing you to view and sometime change device properties.

Restart Device command emulates the process of disconnecting a device and then re-connecting it to
the computer. Note that this operation is not very reliable and may be unsupported by some device
classes. Using the command on unsupported device may eventually require the user to physically
disconnect and re-connect it.

Device Monitoring Studio Documentation Monitoring Session Management

32

http://hhdsoftware.com/dispatch/dms7/serial/create-virtual-serial-port
http://hhdsoftware.com/device-monitoring-studio-server

Serial Bridge, Playback and Remote Source all add additional commands to devices and/or categories
they create and maintain in the tree.

Sessions Tool Window
This tool window lists all currently running sessions and provides sessions management.

For each session, the following information is displayed:

Source
Device type (Serial, USB or Network) and remote computer name. If device is local, only device type
is displayed.

Type
Device category, like “Human Interface Devices”.

Device
The name of the device this session monitors. For multisource sessions, a list of names is displayed.

Processing
A current list of processing modules configured for this session.

Start
Session start time.

Length
Session running time.

State
Depends on the specific data processing module. For example, for data recording, the total number
of recorded bytes as well as commands to end current stream and start new stream are present.

The window has a following list of commands:

Configure Session…
Opens the Session Configuration window that allows you to change the session parameters
(including Capture Filter) and add or remove data processing modules.

Resume Session
Resumes the paused session.

Pause Session
Effectively pauses the entire session, including all configured data processors. No monitoring activity
occurs for the session while it is paused.

Stop Session
Closes all data processing modules, disconnects from the session device(s) and removes the session
from the session list.

Close Visualizer

Device Monitoring Studio Documentation Monitoring Session Management

33

Closes selected data visualizer.
Configure Columns

Allows you to change the list of visible columns and their order.
Expand Item

Expands the current session (shows all configured processing modules).
Collapse Item

Collapses the current session (hides all configured processing modules).

Session Configuration Window
This dialog allows you to specify configuration for new monitoring session or change configuration of
the existing session.

Selected Sources

When you start configuring a new monitoring session by double-clicking on the device in Devices Tool
Window, Session Configuration Window opens. It contains selected device in the Selected Sources list.

Device Monitoring Studio supports the so-called multi-source sessions, when two or more devices are
included in the same session. The following device types support multi-source sessions:

Network
USB
Serial

The following device types do not support multi-source sessions:

Device Monitoring Studio Documentation Monitoring Session Management

34

Playback
Remote (all types)
Serial Bridge

If the current device type supports multi-source, Add More and Remove buttons appear. Clicking the
Add More button brings up the list of other devices of the same type. Click on the device to add it to
the session. Select the device and click the Remove button to remove it from the session.

Running sessions do not allow changing the list of devices. That means that if the Session Configuration
Window is opened for a running session, these buttons will not be present.

Configuration

For some sessions, a session-wide device configuration is available. Serial, Playback, Serial Bridge
sessions currently provide session-wide configuration. See corresponding sections for more information.

Time Measurement Mode

Device Monitoring Studio supports two time-measurement modes: standard and precise. In standard
mode, system default timer is used to measure packet times. Its precision usually varies from 0.5 ms to
20 ms.

Precise mode tells the Device Monitoring Studio to use high-precision system timer, which precision is
usually several microseconds. On some computers, using precise timer to monitor a high-baud rate
session may decrease system performance. Precise mode is default for Windows 7 or later.

Available Processing

This list contains all installed modules that are available for a current session. Supported modules vary
for different device types (USB, Serial or Network) and vary depending on whether the current session is
multi-source session or not. Only a small subset of modules support multi-source sessions.

Device Monitoring Studio also allows the user to create customized “versions” of predefined data
processing modules (see below). If user has created such customized modules, they are also presented in
this list.

A data processing module belongs to one of two categories: visualizers and exporters. Visualizers always
have a separate designated window to present the result of their work to the user in one or more
formats. Exporters usually do not have a designated window and produce non-visible output (like
writing to a file). Exporters often communicate with the user by means of Sessions Tool Window.

To add a data processing module to the session, either double-click it in the list, or select and press the
Add to Session button. A single visualizer may be added multiple times to the session, while some
exporters may prohibit this. Description pane provides a brief description for the selected processing
module.

Favorites

Any processing module may be added to a Favorites list by right-clicking it in the list and selecting the
“Add to Favorites” menu option. Favorites are always displayed at the top, allowing for quicker access to
the selected processing module.

Selected Processing

Displays a list of data processing modules currently configured for the session.

Some of the modules support additional user configuration. These modules display an underlined
comma-separated list of their current configuration settings next to their names. Clicking on this list

Device Monitoring Studio Documentation Monitoring Session Management

35

brings up the Configure window, which allows the user to change default configuration. Alternatively,
you may use the Configure Data Processing… button.

Note that this configuration is per-module and per-session. That is, if you add multiple Structure View
visualizers to a session, you may configure them all with different settings.

Device Monitoring Studio allows you to save the specific configuration for later use. To save custom
configuration, follow this procedure:

1. Add required data processing to the session (see above).
2. Click on processing's configuration and change it.
3. Click the Save Custom Processing… button and specify the custom configuration name. Custom

configuration appears in the Available Processing list.

You may now use this custom configuration when you create new monitoring session, for example.

NOTE
Some data processing modules may disallow changing their configuration if session is already
running.

To remove data processing module from Selected Processing list, select it and press the Remove
command.

Capture Filter

Allows you to select one of predefined capture filters for a session or create a new capture filter.

Scripting Support

Device Monitoring Studio has the Monitoring Object. It allows user scripts to create, configure and start
monitoring sessions and provides full functionality of the Session Configuration Window to user
scripts.

Pressing the Generate Script button will generate a new script file with script code that creates and
initializes a monitoring session that matches the current configuration in Session Configuration
Window.

Device Monitoring Studio Documentation Monitoring Session Management

36

Device Types
Network
This data source supports monitoring of network traffic through network adapters. It enumerates all
installed network adapters, including virtual adapters.

By default, full traffic through the network adapter is always monitored. Use the Capture Filter to reduce
the amount of monitored data and filter unneeded traffic.

Currently, the following data processing modules are supported for network monitoring:

Structure View
Raw Data View
Statistics
Data Recording
Raw Exporter
Text Exporter

Multi-Source Support

Network data source as well as all its data processing modules fully support multi-source sessions.

Process Matching

During monitoring, a network source tries to identify a source (for outgoing packets) or recipient (for
incoming packets) of the packet. If it succeeds, it stores the process ID and process name. This
information is available to the user by means of data visualizers, such as Structure View. This information
is organized in such a way, that even if you record a log file and then play it back, correct process
association information is displayed to the user. Of course, the process association information is valid
only on packet capture time and may become invalid any time later. Windows actively reuses process
IDs, so care must be taken when the user tries to associate a packet with currently running process.

Protocol Definitions

All network data processing modules such as parsing in Structure View or in Capture Filter depend on
protocol definitions installed with Device Monitoring Studio.

These definitions are written using the Protocol Definition Language and are installed with a product in
%INSTALLDIR%\protocols folder.

Device Monitoring Studio also allows the user to customize these definitions by adding new protocols or
modifying existing ones. The current version, although, does not provide any utilities that help the user
in this customization. The user needs to edit the supplied protocol definition files manually to achieve his
task. This will be addressed in future versions.

USB
This data source supports monitoring of traffic to or from any USB device, connected to a local computer
(or remote computer in case of Remote Source).

USB Data Source extracts and presents all available information from a USB device, such as Device
Descriptor, Configuration Descriptor, HID Descriptor and Dependent Devices.

It supports Capture Filter that allows the user to filter unneeded traffic.

Currently, the following data processing modules are supported for USB monitoring:

Device Monitoring Studio Documentation Device Types

37

Structure View (supports multi-source sessions)
Raw Data View (supports multi-source sessions)
URB View (supports multi-source sessions)
Packet View (supports multi-source sessions)
Statistics (supports multi-source sessions)
Custom View (supports multi-source sessions)
Audio View
Video View
HID View
Mass Storage View
Still Image View/MTP View
Communications View
Data Recording
Raw Exporter
Text Exporter

Multi-Source Support

USB data source fully supports multi-source sessions. Not all data processing modules support multi-
source session (see the list above).

Protocol Definitions

Structure View, Raw Data View and Custom View data visualizers, as well as USB Capture Filter depend
on protocol definitions installed with Device Monitoring Studio. Other data visualizers (“legacy”
visualizers ported from the Device Monitoring Studio 6) do not depend on protocol definitions and
therefore, do not support user-defined protocols.

These definitions are written using the Protocol Definition Language and are installed with a product in
%INSTALLDIR%\protocols folder.

Device Monitoring Studio also allows the user to customize these definitions by adding new protocols or
modifying existing ones.

Serial
This data source supports monitoring of traffic to or from any serial device, including legacy, PnP and
virtual serial devices, connected to a local computer (or remote computer in case of Remote Source).

Serial Source extracts the serial device capabilities and presents them in Serial Device Information
window.

It supports Capture Filter that allows the user to filter unneeded traffic.

Currently, the following data processing modules are supported for serial monitoring:

Structure View (supports multi-source sessions)
Raw Data View (supports multi-source sessions)
Request View (supports multi-source sessions)
Packet View (supports multi-source sessions)
Statistics (supports multi-source sessions)
Console View (supports multi-source sessions)
Custom View (supports multi-source sessions)
Data View
MODBUS View
Line View
PPP View
Data Recording

Device Monitoring Studio Documentation Device Types

38

Raw Exporter
Text Exporter

Multi-Source Support

Serial data source fully supports multi-source sessions. Not all data processing modules support multi-
source session (see the list above).

Protocol Definitions

Request View, Console View, Custom View, Structure View and Raw Data View data visualizers, as well as
serial Capture Filter depend on protocol definitions installed with Device Monitoring Studio. Other data
visualizers (“legacy” visualizers ported from the Device Monitoring Studio 6) do not depend on protocol
definitions and therefore, do not support user-defined protocols.

These definitions are written using the Protocol Definition Language and are installed with a product in
%INSTALLDIR%\protocols folder.

Device Monitoring Studio also allows the user to customize these definitions by adding new protocols or
modifying existing ones.

Serial Session Configuration

Serial Source is somewhat different from other data sources. All data sources carefully capture packets
originated in monitored application. In case of serial communications, monitored application often does
not have a priori knowledge of the protocol and therefore cannot issue write (and especially read)
requests of correct sizes. Monitored applications usually read a single packet in several requests or,
sometimes, read several packets in a single request. This makes protocol binding and data analysis
extremely difficult.

Device Monitoring Studio allows you to specify the so-called serial communication mode, also known as
session type. By choosing communication mode, you give DMS a knowledge of the communication
protocol and it starts searching for full protocol packets, or frames in the monitored data stream. It then
reorganizes the data stream into correct sequence of read and write requests. When the new data
stream reaches configured data visualizers and other data processors, they will deal with perfectly
formatted frames, and provide accurate information themselves.

Currently, the following communication modes are supported:

Device Monitoring Studio Documentation Device Types

39

Generic
No repackaging occurs. This is a default mode. Additionally, the user may specify if empty read
packets should be discarded. This should be selected if monitored application uses active polling:
issues a non-blocking read request that gets completed immediately even if there is no incoming
data.

PPP
Serial Source searches for PPP (Point to Point Protocol) frames in the monitored data stream. In
addition to separating the original data stream into individual PPP frames, it also provides character
un-escaping.

One packet in a line
Includes a large set of ASCII protocols where each packet ends with a CR (0D) character, optionally
followed by LF (0A) character. This includes such protocols as AT commands (modems), NMEA (GPS
devices), MODBUS (ASCII mode) and so on.

MODBUS (RTU mode)
MODBUS RTU mode.

MODBUS (ASCII mode)
MODBUS ASCII mode.

Custom communication mode
This mode allows the user to specify custom rules for packet splitting and joining. Refer to the
separate topic Custom Communication Mode for detailed information. If this option is grayed out,
make sure Scripting feature is installed. PPP frames usually encapsulate a network protocols inside
them. Using PPP communication mode and PPP View data visualizer, allows you to automatically
decode them.

Listening Mode

Serial source integrates with Serial Terminal. You may have the serial monitoring session automatically
start a terminal session for the selected device. Enable the “Listen for incoming data” option and
configure the port parameters, such as baud rate, data bits, parity, stop bits and flow control.

If you intend to communicate with a device from the Device Monitoring Studio, make sure the “Terminal
window” switch is set to “Visible”.

Serial Bridge
This module allows the user to create virtual bridges between two serial devices.

For example, if a bridge is created between COM1 and COM2 and then two devices are connected to
COM1 and COM2 correspondingly, it appears to them as if they are connected directly to each other. At
the same time, the presence of virtual bridge allows Device Monitoring Studio to capture the traffic
exchanged by those devices.

Devices must be connected to physical ports using the so-called null-modem cables. The actual cable
wiring depends on device type and configuration. In some cases, two null-modem cables are required
while in others two straight or one null-modem and one straight cables are required.

Null-modem cable is a simple cable with two jacks, which connects two RS-232 ports of two DTEs. It
connects grounds, RD and TD cross-wise, and other signals are connected according to one of the
schemes provided below. The set of transferred channels can be reduced, depending on the flow control
being used, in most cases you need as much as only three wires (ground, RD and TD):

Device Monitoring Studio Documentation Device Types

40

A bridge is active only when a monitoring session is running for the bridge.

To create a bridge, either press the Create New Bridge… command on the Devices Tool Window's
toolbar or execute the Bridge » Create New Bridge… command.

You need at least two serial devices to create a bridge. The following window appears after you execute
the command:

Specify the settings for a new bridge and click the OK button. A window appears that asks for a bridge
name. Enter the bridge name and click the OK button.

Once created, a bridge is always present in Devices Tool Window under the “Bridges” subcategory of
“Serial” category. You may rename a bridge, change its configuration or remove a bridge using the
commands in the Bridge main menu or in bridge's context menu.

In addition, when you start a new monitoring session, Device Monitoring Studio allows you to
“temporary” change the bridge configuration only for the duration of this session. “Default” bridge
configuration is not affected in this case.

Serial Bridge does not support Capture Filter.

Currently, the following data processing modules are supported for bridges:

Raw Data View

Device Monitoring Studio Documentation Device Types

41

Request View
Packet View
Statistics
Data View
PPP View
Data Recording

Generating Script

Click the Generate script button to generate script that creates a new serial bridge and sets its
parameters according to settings in the window.

Multi-Source Support

Serial Bridge does not support multi-source sessions.

Timeout Configuration

TODO

Communications Mode

Serial Bridge Source is somewhat different from other data sources. All data sources carefully capture
packets originated in monitored application. In case of serial bridge, Device Monitoring Studio creates a
virtual link between two serial devices and forwards data between them. It does not have a priori
knowledge of the protocol and therefore cannot issue read and write requests of correct sizes. Device
Monitoring Studio uses pre-allocated buffers and default timeout settings and often reads several
packets in a single request, or, sometimes reads a single packet in several requests or. This makes
protocol binding and data analysis extremely difficult. Moreover, by default, Serial Bridge does not
support protocol binding at all.

Device Monitoring Studio allows you to specify the so-called serial communication mode. By choosing
communication mode, you give DMS a knowledge of the communication protocol and it starts searching
for full protocol packets, or frames in the monitored data stream. It then reorganazies the data stream
into correct sequence of read and write requests. When the new data stream reaches configured data
visualizers and other data processors, they will deal with perfectly formatted frames, and provide
accurate information themselves.

Currently, the following communication modes are supported:

Generic
No repackaging occurs. This is a default mode. Protocol binding is not available in this mode. Raw
Exporter and Text Exporter visualizers are not available in this mode too.

PPP
Serial Bridge Source searches for PPP (Point to Point Protocol) frames in the monitored data stream.
In addition to separating the original data stream into individual PPP frames, it also provides
character un-escaping.

One packet in a line
Includes a large set of ASCII protocols where each packet ends with a CR (0D) character, optionally
followed by LF (0A) character. This includes such protocols as AT commands (modems), NMEA (GPS
devices), MODBUS (ASCII mode) and so on.

MODBUS (RTU mode)
MODBUS RTU mode.

MODBUS (ASCII mode)

Device Monitoring Studio Documentation Device Types

42

MODBUS ASCII mode.

PPP frames usually encapsulate a network protocols inside them. Using PPP communication mode and
PPP View data visualizer, allows you to automatically decode them.

Playback
Playback Data Source allows you to play back the log files recorded using the Data Recording
processing module. Playback never sends any data to any physical device; it only “mimics” the original
device and allows the user to replicate the original monitored session. Log file playback is useful if
session analysis is hard or impossible in real-time during actual device monitoring.

Device Monitoring Studio has two globally configured paths: path to log files and default path for
playback. By default, these paths both point to the same folder and this is a recommended
configuration. The user may change these paths on the Tools » Settings, Recording/Playback Tab.

Data Recording uses the log folder to store log files it creates. Playback Data Source scans the playback
folder for log files and adds them to corresponding categories in Devices Tool Window. A Recorded
Sessions category is created as a child of USB, Serial or Network categories, into which log files are
added. For convenience, device log files are placed into the category named after the device.

Device Monitoring Studio automatically watches for changes in the playback folder and updates the tree
accordingly.

Starting Playback

To start log file playback, select a log session in a tree and press the Start Monitoring… button or just
double-click it.

A Data Source Configuration window opens that allows you to select the time range for playback as
well as specify the playback speed.

Use the From and To time selection fields to specify the required range, or use the mouse to select the
range on the plot.

You may select playback speeds from 1:16 to 16:1, as well as two additional options: stepped and
continuous. These addition options mean the following:

Stepped
Display only a single packet after which requires you to press the Next button on Device Monitoring
Studio's status bar.

Device Monitoring Studio Documentation Device Types

43

Continuous
Do not take original time delays between packets into account and displays the whole contents of
the log file stream at once. Use this mode with care, as it may lock Device Monitoring Studio's user
interface for some time.

Playback Controls

During playback, Device Monitoring Studio's status bar displays two progress bars and optional Next
button. The first, longer progress bar displays the overall playback progress. If there is a significant delay
between two consecutive packets, a second progress bar visualizes this delay. If you do not want to wait,
click the Next button. In stepped playback speed mode, you must press the Next button after each
packet.

Managing Log Files

You may use additional commands, available through the item context menu in Devices Tool Window to
manage log files:

Open File Location
Open the log file's folder in Windows Explorer.

Delete
Delete the log file (AKA session) or all log files for the device.

Sort by Date
Sort all log file sessions by date of creation.

Sort by Name
Sort all log file sessions by their names.

Display Date and Time
Display session's date and time next to its name.

Display Size
Display session's size, in bytes, next to its name.

Working with Log Files from Other Locations

Although Device Monitoring Studio automatically detects and displays log files in default playback
folder, you may easily play back a log file located in any other location. Just use the File » Open
command, Drag&Drop or simply double-click the log file in Windows Explorer to open the file in Device
Monitoring Studio and bring up the Session Configuration Window.

Multi-Source
Multi-source is not a separate data source type. Instead, it is a technology that allows the user to
monitor two or more devices of the same type in a single monitoring session. Device Monitoring Studio
considers such monitoring session as having a single source and sorts incoming packets according to
their capture times.

The following data sources support multiple-source:

Network
USB
Serial

The following data sources do not support multiple-source:

Device Monitoring Studio Documentation Device Types

44

Serial Bridge
Playback
Remote

Multi-Source Session Creation

You start creating multi-source session just like any other session. Double-click a first device you want to
monitor in the Devices Tool Window to bring up the Session Configuration Window.

If the selected device belongs to one of the supported data types, Add More button appears. Click the
button to see the list of all devices of the same type you may add to the session. You cannot add the
same device twice and you cannot exceed the maximum of 16 devices per session.

Not all data processing modules support multi-source sessions. Session Configuration Window
automatically updates list of available processing modules when you add or remove device. If only one
device remains in a session, it becomes an ordinary session.

After creation, multi-source session does not allow you to add or remove devices.

Multi-Source Device Identification

To help you distinguish packets from different devices, all data visualizers that support multi-source
sessions use different colors to highlight packets from different devices. You configure a global color
table on Tools » Settings, Multi-Source Device Colors Tab. For reference, Sessions Tool Window uses the
same colors when it displays the list of devices in a session.

Unsupported Data Sources

Serial Bridge, Playback and Remote data sources do not support multi-source.

Note that Data Recording processing module supports multi-source, but when you later play back the
resulting log file, it is considered as having a single source, but will still show you packets from all
original devices.

Remote
Device Monitoring Studio supports monitoring of Serial and USB devices, connected to remote server.
Device Monitoring Studio with Remote Data Source installed already supports monitoring of remote
devices, but you need to install a copy of Device Monitoring Studio Server on remote computer to make
its devices available for clients.

Remote Source is not a separate data source; instead, it is a technology that allows the user to access
Serial and USB data sources running on a remote server.

Connecting to Remote Server

Execute the Tools » Connect New Server… or press the Connect New Server… button on Devices Tool
Window's toolbar. The following window opens:

Device Monitoring Studio Documentation Device Types

45

Enter the server name or address manually or click the Browse button to search for the server name in
the Active Directory or Local Network or select one of the auto-discovered servers.

Auto-discovery works in domain and workgroup networks and automatically locates all available servers.
Note that server administrator can disable server auto-discovery.

After you click the OK button, Device Monitoring Studio connects to remote server, queries the list of
supported devices and adds them to the Devices Tool Window.

Remote Monitoring Session

You start a remote monitoring session just like a local monitoring session. First, select a remote device in
Devices Tool Window and press the Start Monitoring… button on toolbar, or simply double-click on
the device. Session Configuration Window opens. Configure remote session the same way as you
configure a local session.

Remote sessions do not support multi-source.

Disconnecting from the Server

To disconnect a server, select its name in Devices Tool Window, right-click to bring up a context menu
and select the Disconnect item. All server devices are removed from a tree as well as all running
monitoring sessions are terminated.

Network-related Errors

Whenever a network error, connection error, server software error or hardware error occurs, a
connection is terminated. You receive a corresponding error message. All running monitoring sessions
from this server are also terminated with error message.

A client and server exchange a short keep-alive signal every 30 seconds even if there are no running
monitoring sessions.

Server Configuration

Consult the corresponding topic to find more information on installing and configuring Device
Monitoring Studio Server.

Import
Import Data Source allows playing back network session logs recorded by other applications. The

Device Monitoring Studio Documentation Device Types

46

following applications are supported:

Wireshark (.pcap log files)
Microsoft Network Monitor (.cap log files)

To start an import data source monitoring session, double click the “External log file import adapter”
item under “Network » Virtual Adapters” item in Devices Tool Window.

Then click the “Select file” link under the Configuration to open up Data Source Configuration window
where you can specify the log file to use.

Device Monitoring Studio Documentation Device Types

47

Data Processing
Custom View
Device Monitoring Studio supports parsing monitored packets according to a defined protocol (see
protocol binding topic for details). After the packet is bound, values of packet fields are available for
processing. The easiest way to see all field values is to use Structure View data visualizer.

However, if you want a better format for field values, use the Custom View data visualizer. It takes a
special script file, written in TypeScript (a superset of JavaScript) which must be placed into the default
protocols folder and its file name must end with .view.ts .

Custom View Workflow

When Custom View initializes, it loads a user-supplied script file and executes it. By convention, the user
script should do nothing in a global scope and should not use global variables. Only declarations of
different kinds are allowed at a global scope.

After the script execution ends, a following global function is invoked:

TypeScript
function createVisualizer(multiSession: boolean): ICustomVisualizer;

It is passed a single boolean argument which indicates whether this is a multi-source session or not.

The user script must initialize an instance of a class that implements the ICustomVisualizer interface and
return a reference to it:

TypeScript
interface ICustomVisualizer {

 // Custom visualizer's name
 readonly name: string;

 // Custom visualizer's description
 readonly description: string;

 // A source type (a string) or types (string array).
 // Supported types are "serial", "usb", "bridge" and "network"
 readonly sourceType: string | string[];

 // Optional error scheme ordinal. If omitted, defaults to zero
 readonly errorScheme?: number;

 // Return schemes used by this custom view
 getSchemes(): SchemeDefinition[];

 // Return a list of options supported by this custom view
 getOptions(): OptionDefinition[];

 // processPacket is called with each packet
 processPacket(packet: Object, isJoinPackets: boolean): void;
}

All interface members are mandatory and custom class must implement all of them. name should be set
to unique custom visualizer name, which is later displayed in Protocols List Window. description is
displayed to the user when he selects a custom visualizer from a list.

sourceType must be assigned a string that indicates the supported session type, that is, “serial”, “usb”,
“bridge” or “network”. If the visualizer supports several session types, the property must be assigned to
an array of strings indicating all supported session types.

getSchemes method is invoked to retrieve an array with all defined visual schemes. SchemeDefinition is

Device Monitoring Studio Documentation Data Processing

48

defined as

TypeScript
interface SchemeDefinition {
 // Scheme name
 name: string;
 // Font face
 fontFace: string;
 // Font size, in pt
 fontSize: number;
 // Font weight is bold
 bold?: boolean;
 // Font style is italic
 italic?: boolean;
 // Text color
 color?: number;
 // Background color
 backColor?: number;
}

All fields are self-explanatory. Note that font size is in points and may be a non-integer number. Colors
must be represented as a hexadecimal number in a form of 0xRRGGBB . Device Monitoring Studio
internally stores the list of schemes and provides the user with an interface to change colors and fonts.
Subsequently, custom script refers to the individual visual scheme by its ordinal number in an array
returned by the getSchemes method. The array the method returns is required to contain at least one
visual scheme.

Optional errorScheme property may specify the scheme ordinal to be used to display system error
messages. If omitted, defaults to zero.

getOptions method should return (a possibly empty) list of user-controlled options for a custom view
script. OptionDefinition is defines as

TypeScript
interface OptionDefinition {
 // Option friendly name
 name: string;
 // Default option value
 value: boolean;
 // Change function, called with a new value when user changes option
 change: (newVal: boolean) => void;
}

As with visual schemes, the list of options is stored internally and the user is provided with a way to
change option values. Option values are allowed to be changed at any time and they are automatically
applied with a call to the functor passed in a change property.

processPacket method is then invoked for each bound packet. A reference to a packet is passed in a first
method argument, while the current state of a global “Join consequent packets” switch is passed in a
second argument.

WARNING
The custom script should not make any assumptions on the order of incoming packets. For
performance reasons, the consequent order of packets is not guaranteed. Therefore, custom view
script cannot store any inter-packet state inside a class that derives from ICustomVisualizer
interface.

The following topic, the Visualizer Host describes the API available to custom view script to process and
format packet data.

Device Monitoring Studio Documentation Data Processing

49

Visualizer Host

Accessing Fields of a Bound Packet

TypeScript
function get(obj: object, path: string, forceReference?: boolean): any;

A first argument to a processPacket method is a reference to an object that represents a bound packet
to a custom view script. For performance reasons, parsed fields are not directly accessible to the script.
Instead, it must call a get function, passing it the bound packet object, a full path to the required field
and an optional boolean argument, which, being set to true , forces the evaluation of the ref() function
for the result.

Advanced Formatting

TypeScript
function format(fmtString: string, ...values: any[]) : string;

format function takes a format string and a list of arguments to substitute in a format string and returns
a resulting string.

Visualizer Host

Visualizer Host is an object accessible to a custom view script via a global variable nvis . It implements
the following interface:

Device Monitoring Studio Documentation Data Processing

50

TypeScript
interface IVisualizerHost {
 // Enable or disable line numbers and optionally set scheme for line numbers
 enableLineNumbers(state: boolean, scheme?: number): void;

 // Add new block, optionally set background color
 addBlock(color?: number): void;

 // Add text. '\n' character is used to separate lines
 addText(text: string, scheme?: number): void;

 // Low-level add text
 addTextRaw(...args: (string | number | boolean)[]): void;

 // Add a line break
 addNewLine(): void;

 // Add a dump
 addDump(scheme: number, obj: object): void;

 // Add a formatted table
 addTable(nameScheme: number, valueScheme: number, ...rows: any[]): void;

 // Format packet time
 formatTime(entryTime: number, prevEntryTime: number): string;

 // Get multi-source device name
 getDeviceName(ordinal: number): string;

 // Visualize bound field
 visualize(obj: object): string;

 // Control flow: set variable
 setVariable(varName: string, varValue: number): void;
 // Control flow: if
 ifEq(varName: string, varValue: number): void;

 // Control flow: if not
 ifNotEq(varName: string, varValue: number): void;

 // Control flow: end if
 ifEnd(): void;

 // Control flow: else
 ifElse(): void;
}

enableLineNumbers

This method switches the built-in displaying of line numbers for a custom view. This is the only
method of the IVisualizerHost interface that is allowed to be called outside of the execution of
processPacket method.

addBlock

Add a new block to the visualizer. A block is a collection of lines. Block may have a separate
background color, which may be directly passed to this method. If omitted, a color is set
automatically. By default, the Custom View uses interlacing when displaying subsequent blocks.

addText

Add a text to the visualizer. A text may contain one or more lines, separated by the '\n' character.
A second optional argument specifies the visual scheme (as an ordinal in visual scheme array) to be
used to display the text. If omitted, the current scheme is used.

addTextRaw

A more efficient version of the previous method. It accepts any number of arguments. Each
argument must be a string , a number or a boolean . If an argument is a string, it is added to the
visualizer. Note that the string is not scanned for new line characters. A number changes the current

Device Monitoring Studio Documentation Data Processing

51

visual scheme to a given one. A special value of -1 reverts the most recent visual scheme change. A
boolean value (no matter whether it is true or false) adds a newline.

addNewLine

Add a new line to the visualizer.
addDump

Add a dump to visualizer. The first argument indicates a visual scheme to use and the second
argument must be a reference to a bound packet field you want to display. It is recommended to
use monospace font, otherwise the dump will look unaligned.

addTable

Add a formatted table to the visualizer. The first argument is a visual scheme index to use for a field
name and the second argument is a visual scheme to use for a field value. Other arguments must
come in pairs. The first element of a pair is a field name (a string), while the second element is a field
value. If you want to use the special visualization algorithms (also used by Structure View and Text
Exporter components), like automatic parsing of enumeration values and automatic array
visualization, make sure you pass a reference to a field. For simple cases, use plain field values.

formatTime

Standard packet time formatting routine. Pass it the current packet's time and previous packet's
time to get a formatted packet time string.

getDeviceName

May be used in multi-source session to obtain a name of a source device by its index.
visualize

Invokes standard visualization mechanism for a passed field reference and returns a resulting string.
setVariable

Assigns a value for a given variable. As mentioned before, the order of packets in calls to
processPacket is not guaranteed, preventing the custom view script of maintaining any inter-packet
state. To overcome this limitation, a custom view script may have any number of named variables,
access to which is synchronized. That means, that variable set during processing of packet N is
guaranteed to have the same value during processing of packet N+1 .

ifEq

Checks if the variable equals the given value. If the condition is false, all subsequent visualizer
commands are ignored until ifElse or ifEnd method is invoked.

ifNotEq

Checks if the variable not equals the given value. If the condition is false, all subsequent visualizer
commands are ignored until ifElse or ifEnd method is invoked.

ifEnd

Marks the end of a current if block.
ifElse

Reverts the result of the previous condition for subsequent commands, until the ifEnd method is
invoked.

Samples

For an up-to-date samples, look for source code for Request View, Console View in Serial Monitor and
HTTP View in Network Monitor.

The Protocols List Window may be used for fast navigation to the source code.

User Experience

Device Monitoring Studio Documentation Data Processing

52

Custom View data visualizer window supports all basic navigation operations: it may be scrolled using
mouse, keyboard or with help of scrollbars. It also supports scroll touch gestures.

Custom View supports selection, where a portion of text in a window (or the whole window contents)
may be selected using mouse. Double-clicking a word selects the word. Selected text may later be
copied into the Clipboard or exported into an external file in text or HTML format.

The Edit » Find command may be used to search for a pattern in a window. Edit » Go to Packet
command jumps to the given packet (or the closest available) and highlights it.

Edit » Select Packet selects the entire packet under the mouse cursor.

Structure View
Structure View data visualizer is a two-part window. First part displays each monitored packet parsed
according to installed set of protocols. Second part displays raw packet contents. Changing the current
position in one window automatically changes the position in another, provided the Tools » Raw Data
View » Synchronize option is turned on.

Decoded Packet Contents

Each packet is matched against one or more of loaded protocol definition files and if matched
successfully, all protocol fields are shown in the top part of the Structure View visualizer. For each field,
its name, value, starting offset and size are displayed. If field consists of other fields, you may expand it
by pressing the little plus icon or using the Right Arrow key on the keyboard.

You may use mouse and keyboard to navigate to other fields within a current packet or to other packets.

If you bring up the context menu, the following commands are displayed:

Copy Line
Copies the currently selected line into the Clipboard.

Copy Value
Copy only field's value into the Clipboard.

Expand Sub-Tree
Expand the field's sub-tree.

Collapse Sub-Tree
Collapse the field's sub-tree.

Device Monitoring Studio Documentation Data Processing

53

Next Packet
Jump to the next packet.

Previous Packet
Jump to the previous packet.

Go to Packet…
Jump to the specified packet.

Selected Packet Details…
Display details for the selected packet (if Synchronize option is off).

Set Filter…
Set or modify the current display filter.

Raw Data View

See the Raw Data View visualizer section for description of the bottom part of the Structure View data
visualizer.

Root Protocol

By default, Structure View visualizer always uses the predefined “root” protocol when it parses incoming
packets. The following table describes default root protocols for each supported source type:

Type Default Protocol Name
Network Ethernet

USB Usb

Serial Serial

Each individual Structure View window allows you to select another protocol to become a root for each
packet. If monitored packet does not belong to the selected protocol, it is never displayed, thus the root
protocol may also behave like a filter.

To change the root protocol, do one of the following:

Before session creation: after you add a Structure View processing module in the Session
Configuration Window, open its configuration and switch to the Root Protocol tab.

For running session: click on Structure View's configuration settings in Sessions Tool Window and
switch to the Root Protocol tab.

For running session: right-click in the visualizer to bring up the context menu and select the Set
Root Protocol… item.

Device Monitoring Studio Documentation Data Processing

54

Select the protocol from a list. If you are changing the setting for a running session, use the Affect only
new packets switch to control the change behavior.

If you leave the switch unchecked, the session will be paused until the Structure View visualizer finishes
updating.

Display Filter

In addition to session-wide Capture Filter, each individual Structure View window allows you to set its
own filter, called display filter.

To change the display filter, do one of the following:

Before session creation: after you add a Structure View processing module in the Session
Configuration Window, open its configuration and switch to the Display Filter tab.

For running session: click on Structure View's configuration settings in Sessions Tool Window and
switch to the Display Filter tab.

For running session: right-click in the visualizer to bring up the context menu and select the Set
Filter… item.

Use this window to select a display filter from a list, or enter the filter string manually, give it a name and
save.

Device Monitoring Studio Documentation Data Processing

55

If you are changing the setting for a running session, use the Affect only new packets switch to control
the change behavior. If you leave the switch unchecked, the session will be paused until the Structure
View visualizer finishes updating.

Operation

Structure View data visualizer with configured Display Filter parses each incoming packet according to
current protocol definition files and then evaluates a filter string against it. If a packet passes the test, it is
included in the visualizer, otherwise, it is discarded.

Raw Data View
The purpose of this data visualizer is to extract the raw data from packets and display it as contiguous
data stream.

The visualizer is visually divided into two parts, where incoming data is displayed in the top part and
outgoing data is displayed in the bottom part. You can use the mouse to adjust the size of both parts.

All incoming or outgoing data is grouped into the single stream. By default, each next packet has
interlaced background color, allowing you to visually separate packets from one another. You can
choose between three packet coloring modes using the Tools » Raw Data View » Packet Coloring
command. There are “no coloring” mode, “odd/even” coloring mode and “read/write” coloring mode.

When you hover the mouse pointer over data in a stream, the following brief packet information is
displayed:

1. Packet number.

2. Packet absolute time and difference from the previous packet.

NOTE
Time difference to the actual previous packet is displayed. This maybe an informational or
control packet, or packet, which is actually displayed in another part (that is, outgoing or
incoming packet).

Device Monitoring Studio Documentation Data Processing

56

3. Size of the whole packet.

4. Size of the data taken from the packet.

5. For USB, the endpoint information is displayed.

The cursor movement in both parts may be synchronized. After you enable the synchronization using
the Tools » Raw Data View » Synchronize command, moving the cursor in one part automatically
moves the cursor in another part. Device Monitoring Studio automatically locates the nearest packet.

Customization

The Raw Data View provides great customization options, which you may assign separately to incoming
and outgoing parts.

Display As
You may configure data display as hexadecimal, decimal, octal or binary numbers. You can also treat
data stream as floating-point numbers of either single or double precision.

Group By
You may group data in bytes, words, double words or quad words.

Columns
You may change the number of displayed columns. If you select “Auto”, the data stream will take all
available window width.

Code Pane
Allows you to switch the code (left) pane on or off.

Text Pane
Allows you to switch the text (right) pane on or off.

Endianness
You may display data as little-endian or big-endian. Obviously, this will not affect data grouped in
bytes.

Encoding
Change the text encoding in the text pane. More than 160 different encodings are supported,
including UTF-8 and UTF-16.

Endpoints (USB only)
Allows you to filter the data stream by USB endpoints.

In addition, the Raw Data View visualizer allows you to fine-tune the visual aspect of many features it
displays. Bring up the context menu and select the Coloring… command. The following window
appears.

Device Monitoring Studio Documentation Data Processing

57

The following visualization elements are accessible for customization:

Text
Foreground color of all text.

Background
Background color of all text.

Address
Foreground color of address area.

Address background
Background color of address area.

ASCII/UNICODE text
Foreground color of text pane.

ASCII/UNICODE background
Background color of text pane.

Even column/row background (for interlaced modes)
Background color for column/row interlaced mode

Odd column/row background (for interlaced modes)
Background color for column/row interlaced mode

“No data” text
Foreground color of the area after the last monitored byte.

Cursor fill
Background color of the cursor.

Cursor outline
Cursor's outline color.

Active row & column highlight text
Foreground color of a highlighted cell.

Active row & column highlight background
Background color of a highlighted cell.

Device Monitoring Studio Documentation Data Processing

58

Odd packet text
Foreground color of an odd packet if packet interlacing mode is on.

Odd packet background
Background color of an odd packet if packet interlacing mode is on.

Odd packet outline
Outline color of an odd packet if packet interlacing mode is on.

Even packet text
Foreground color of an even packet if packet interlacing mode is on.

Even packet background
Background color of an even packet if packet interlacing mode is on.

Even packet outline
Outline color of an even packet if packet interlacing mode is on.

Selection
Background color of a selection.

Some of these elements allow you to select “Automatic” option. In this case, they will either use the color
from another related element, or use operating system default color.

The following options are also configurable through the Layout Dialog:

Packet interlacing
You may choose to interlace rows, colors or do not interlace at all.

Smart indentation
More visually appealing indentation is applied in some group modes when this setting is on.

Antialiased quality
Use Cleartype fonts to display visualizer data. If you enable this option, Device Monitoring Studio
may require more processing resources.

You may save current settings as schemes to load them in the future. HHD Software also provides
several schemes for you to choose.

Navigation

You may use standard keyboard keys to navigate the view:

Device Monitoring Studio Documentation Data Processing

59

Key or Key
Combination

Action

Left Move the cursor one cell left. If the cursor is on the first cell in a
line, it goes to the last cell on the previous line.

Right Move the cursor one cell right. If the cursor is on the last cell in a
line, it goes to the first cell on the next line.

Up Move the cursor one line up.
Down Move the cursor one line down.
Home Move the cursor to the beginning of the line.
End Move the cursor to the end of the line.
Ctrl + Home Move the cursor to the beginning of the data stream.
Ctrl + End Move the cursor to the end of the data stream.
PgDn Scroll the data stream one page down.
PgUp Scroll the data stream one page up.
Ctrl + Right Go to the beginning of the next packet (default combination)
Ctrl + Left Go to the beginning of the previous packet (default combination)

In addition, you may use the mouse to navigate the cursor or scrollbars to navigate a view.

The following command, in addition to keyboard and mouse navigation, may be used to navigate the
view:

Tools » Raw Data View » Go to Offset
Navigate to the offset in the window. Offset may be specified as a decimal or hexadecimal number
or as percentage.

Tools » Raw Data View » Previous Packet
Navigate to the beginning of the previous packet.

Tools » Raw Data View » Next Packet
Navigate to the beginning of the next packet.

Pattern Coloring

Raw Data View visualizer allows you to create one or more patterns to highlight them in the data stream
automatically. A pattern is either an encoded or UNICODE string, regular expression or a sequence of
bytes, words, double words or quad words.

Device Monitoring Studio Documentation Data Processing

60

For each pattern you create, you may select the background and foreground color as well as an optional
outline color. You may also specify a transparency value for a background color so the colors from
multiple components mix well. A single cell may have the following applied coloring:

1. If packet interlacing option is on, odd and even packets are colored differently.
2. If there is a selection, cells belonging to a selection are colored differently.

This window also allows you to save the rules to a file or load them from a file.

See the Regular Expressions topic for details on supported regular expression syntax.

Advanced

Selecting Data

The view supports the concept of multiple selection, first introduced in our Hex Editor Neo product. That
means that several non-contiguous ranges of data may be selected at the same time. We refer you to
the documentation of the Hex Editor Neo for more information about the multiple selection concept
and how to work with it.

You may use both mouse and keyboard to select data. Hold the Shift key while navigating to modify the
current selection. Hold the left mouse button and drag the mouse to do the same. Hold the Ctrl or Alt
keys to change mouse selection behavior.

To select the whole packet the cursor stays in, execute the Edit » Select Packet command.

You can select all data in a stream using the Edit » Select All command and drop the selection using the
Edit » Select None command. You can invert the current selection using the Edit » Select Invert
command.

Another way to select data is to execute the Find All command. See Searching for Data for more
information.

Exporting Data

After you selected data in a view, you may copy it to the Clipboard or export to the file.

Copying to the Clipboard
After you execute the Edit » Copy command, depending on whether the cursor is currently in Code
Pane or Text Pane, the following occurs:

If the Code Pane is active, numbers displayed in code pane are placed into the Clipboard.
Settings like Display As, Group By and others affect the result.
If the Text Pane is active, the textual representation of the selected data is placed into the
Clipboard. Currently selected encoding for the view is used to convert text.

Exporting data
Executing the Edit » Export… command copies the selected binary data to the given file. Data is
copied “as is”.

Searching for Data

Raw Data View visualizer provides you with rich text and data searching capabilities. To start searching,
execute the Edit » Find… command.

Device Monitoring Studio Documentation Data Processing

61

https://hhdsoftware.com/hex-editor

You may search for an encoded text string, UNICODE text string, regular expression or byte sequence.
Select the type from the Type drop down box, enter the pattern to search in the Find what box, specify
additional options and press either the Find or Find All buttons.

For both string options, you may enable regular expression mode. If regular expression mode is enabled,
you may choose the sub-match to use. See the Regular Expressions topic for more information on
supported syntax and options.

After you press the Find button, Device Monitoring Studio locates the first occurrence of a pattern. If
pattern is not found, a message box is displayed. Use the Edit » Find Next command to continue
searching.

Another option is to press the Find All button. In this mode, Device Monitoring Studio will search for all
occurrences of a pattern and produce a multiple selection, containing all located ranges.

After you execute the Find All command, the Find All Results window is displayed:

If you leave the Display results pane box checked, the Selection tool window is displayed. It displays brief
information about a multiple selection object, as well as a list of all ranges in a selection object. Clicking
on a range moves the cursor to the beginning of the range. Right clicking on it opens a shortcut menu
with following commands:

Go to Start
Move the cursor to the beginning of the range.

Go to End
Move the cursor to the end of the range.

Delete Block
Removes the given range from a selection.

Clear Selection
Clears the selection.

Go to Offset

Device Monitoring Studio Documentation Data Processing

62

You can change the way entered offset is interpreted, according to the following table:

Number
Type

Absolute offset Relative offset

Hexadecimal Absolute offset in
hexadecimal format.
Only non-negative
values are allowed.

Relative offset in hexadecimal format. May
either be positive or negative number. The
resulting offset is then calculated by adding
the given offset to the current one.

Decimal Absolute offset in
decimal format. Only
non-negative values
are allowed.

Relative offset in decimal format. May either
be positive or negative number. The resulting
offset is then calculated by adding the given
offset to the current one.

Octal Absolute offset in
octal format. Only
non-negative values
are allowed.

Relative offset in octal format. May either be
positive or negative number. The resulting
offset is then calculated by adding the given
offset to the current one.

Percent Absolute offset in
decimal format as a
percent of the
current file's size.

The resulting offset is displayed at the bottom of the window in hexadecimal and decimal formats.

Regular Expressions

Regular expressions (RegEx) provide a concise and flexible means for identifying strings of text of
interest, such as particular characters, words, or patterns of characters. Regular expressions are written in
a formal language. The syntax used by the Device Monitoring Studio is essentially the syntax
standardized by ECMAScript, with minor changes in support of internationalization. The following
section briefly describes the syntax.

Regular expressions are supported by the following Raw Data View visualizer's features:

Pattern Highlighting

Using this feature you may easily search across the monitored USB, Serial or Network data stream for
specific packets/data patterns, which match regular expression (RegExp) entered in “Find what:” input
field.

Capturing Sub-expressions

Regular expression matching allows you to specify what sub-expression you want to capture. Sub-

Device Monitoring Studio Documentation Data Processing

63

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

expression zero represents the entire expression, sub-expression 1 and greater represent corresponding
sub-expressions.

If you specify the sub-expression that is greater than the total number of sub-expressions, the error
message is displayed.

Usage Tips and Performance Considerations

Using regular expressions affect performance and memory usage. Always prefer using normal pattern
searching functions whenever possible.

The following limitations are present in the current version of the Device Monitoring Studio:

Searching for a regular expression backwards is not supported.
Searching within selection (either single or multiple) is not supported.
Pattern Highlighting will sometimes fail to highlight a complex match if it starts long before the
visible area and/or ends long after the visible area.
Zero-matching regular expressions are forbidden.

Regular Expressions Syntax

A regular expression is a pattern of text that consists of ordinary characters (for example, letters a
through z) and special characters, known as metacharacters. The pattern describes one or more strings
to match when searching text. The following table contains the complete list of metacharacters and their
behavior in the context of regular expressions (regular expressions syntax):

Metacharacter Description
\ Marks the next character as a special character, a literal, a

backreference, or an octal escape. For example, n matches the
character n . \n matches a newline character. The sequence \\
matches \ and \(matches (.

^ Matches the position at the beginning of the input string. Also
matches the position following \n or \r .

$ Matches the position at the end of the input string. Also matches
the position preceding \n or \r .

* Matches the preceding character or sub-expression zero or more
times. For example, zo* matches z and zoo . * is equivalent to
{0,} .

+ Matches the preceding character or sub-expression one or more
times. For example, zo+ matches zo and zoo , but not z . + is
equivalent to {1,} .

? Matches the preceding character or sub-expression zero or one
time. For example, do(es)? matches the do in do or does . ? is
equivalent to {0,1} .

{n} n is a non-negative integer. Matches exactly n times. For
example, o{2} does not match the o in Bob , but matches the two
o's in food .

{n,} n is a non-negative integer. Matches at least n times. For
example, o{2,} does not match the o in Bob and matches all the
o's in foooood . o{1,} is equivalent to o+ . o{0,} is equivalent to
o* .

Device Monitoring Studio Documentation Data Processing

64

{n,m} m and n are non-negative integers, where n <= m . Matches at
least n and at most m times. For example, o{1,3} matches the
first three o's in fooooood . o{0,1} is equivalent to o? . Note that
you cannot put a space between the comma and the numbers.

? When this character immediately follows any of the other
quantifiers (* , + , ? , {n} , {n,} , {n,m}), the matching pattern is
non-greedy. A non-greedy pattern matches as little of the
searched string as possible, whereas the default greedy pattern
matches as much of the searched string as possible. For example,
in the string oooo , o+? matches a single o , while o+ matches all
o s.

. Matches any single character.
(pattern) A sub-expression that matches pattern and captures the match.

To match parentheses characters (), use \(or \) .

(?:pattern) A sub-expression that matches pattern but does not capture the
match, that is, it is a non-capturing match that is not stored for
possible later use. This is useful for combining parts of a pattern
with the “or” character | . For example, industr(?:y|ies) is a
more economical expression than industry|industries .

(?=pattern) A sub-expression that performs a positive lookahead search,
which matches the string at any point where a string matching
pattern begins. This is a non-capturing match, that is, the match is
not captured for possible later use. For example
Windows (?=95|98|NT|2000) matches Windows in Windows 2000 but
not Windows in Windows 3.1 . Look-aheads do not consume
characters, that is, after a match occurs, the search for the next
match begins immediately following the last match, not after the
characters that comprised the lookahead.

(?!pattern) A sub-expression that performs a negative lookahead search,
which matches the search string at any point where a string not
matching pattern begins. This is a non-capturing match, that is,
the match is not captured for possible later use. For example
Windows (?!95|98|NT|2000) matches Windows in Windows 3.1 but
does not match Windows in Windows 2000 . Look-aheads do not
consume characters, that is, after a match occurs, the search for
the next match begins immediately following the last match, not
after the characters that comprised the lookahead.

(?>pattern) Independent sub-expression, match pattern and turn off
backtracking.

(?<=pattern) Positive look-behind assertion, match if after pattern but don't
include pattern in the match. (pattern must be constant-width).

(?<!pattern) Negative look-behind assertion, match if not after pattern.
(pattern must be constant-width).

(?i:pattern) Match pattern disregarding case. Allows to temporary turn off
case sensitiveness during pattern matching.

(?$name) Reference a named regular expression class. A class must be
defined in the Regular Expressions Settings, otherwise, the error
will be generated.

x|y Matches either x or y . For example, z|food matches z or food .
(z|f)ood matches zood or food .

Metacharacter Description

Device Monitoring Studio Documentation Data Processing

65

[xyz] A character set. Matches any one of the enclosed characters. For
example, [abc] matches the a in plain .

[^xyz] A negative character set. Matches any character not enclosed. For
example, [^abc] matches the p in plain .

[a-z] A range of characters. Matches any character in the specified
range. For example, [a-z] matches any lowercase alphabetic
character in the range a through z .

[^a-z] A negative range characters. Matches any character not in the
specified range. For example, [^a-z] matches any character not in
the range a through z .

\b Matches a word boundary, that is, the position between a word
and a space. For example, er\b matches the er in never but not
the er in verb .

\B Matches a non-word boundary. er\B matches the er in verb but
not the er in never .

\cx Matches the control character indicated by x . For example, \cM
matches a Control-M or carriage return character. The value of x
must be in the range of A-Z or a-z . If not, c is assumed to be a
literal c character.

\d Matches a digit character. Equivalent to [0-9] .
\D Matches a non-digit character. Equivalent to [^0-9] .
\f Matches a form-feed character. Equivalent to \x0c and \cL .
\n Matches a newline character. Equivalent to \x0a and \cJ .
\r Matches a carriage return character. Equivalent to \x0d and \cM .
\s Matches any white space character including space, tab, form-

feed, and so on. Equivalent to [\f\n\r\t\v] .
\S Matches any non-white space character. Equivalent to

[^ \f\n\r\t\v] .
\t Matches a tab character. Equivalent to \x09 and \cI .
\v Matches a vertical tab character. Equivalent to \x0b and \cK .
\w Matches any word character including underscore. Equivalent to

[A-Za-z0-9_] .
\W Matches any non-word character. Equivalent to [^A-Za-z0-9_] .
\xn Matches n , where n is a hexadecimal escape value. Hexadecimal

escape values must be exactly two digits long. For example, \x41
matches A . \x041 is equivalent to \x04 & 1 . Allows ASCII codes
to be used in regular expressions.

\num Matches num , where num is a positive integer. A reference back to
captured matches. For example, (.)\1 matches two consecutive
identical characters.

\n Identifies either an octal escape value or a back-reference. If \n is
preceded by at least n captured sub-expressions, n is a back-
reference. Otherwise, n is an octal escape value if n is an octal
digit (0-7).

Metacharacter Description

Device Monitoring Studio Documentation Data Processing

66

\nm Identifies either an octal escape value or a back-reference. If \nm
is preceded by at least nm captured sub-expressions, nm is a back-
reference. If \nm is preceded by at least n captures, n is a back-
reference followed by literal m . If neither of the preceding
conditions exists, \nm matches octal escape value nm when n and
m are octal digits (0-7).

\nml Matches octal escape value nml when n is an octal digit (0-3) and
m and l are octal digits (0-7).

\un Matches n , where n is a Unicode character expressed as four
hexadecimal digits. For example, \u00A9 matches the copyright
symbol (©).

Metacharacter Description

Examples

This section lists a few regular expressions examples. The description section describes the results of the
Find All command used with a given regular expression.

\w+

Match all identifiers in a programming language source file.
(.)\1+

Match any sequence of repeated characters, which length is at least two characters.
[\x00\x01\x02]

Match 00, 01 or 02 bytes in the document.
\w+(?=\s**)

Match all C++ class names in the document which are followed by a * character. * character and
any optional space characters before it are not matched.

(?<=http://)[\w\.]+?\.(com|net|org)

Match all domain name portions of URLs.
\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\

Match all IPv4 addresses.
^{

Match “{” characters at the beginning of the line.

URB View
This visualizer decodes USB Request Block (URB) packets. It also displays all PnP packets. All monitored
URBs can be displayed in one of two schemes - Basic or Complete. In Basic scheme, only general
information about a packet is displayed, while in Complete scheme full packet information, including the
binary data attached to the packet is displayed.

Device Monitoring Studio Documentation Data Processing

67

For each captured packet the following information is displayed:

Packet number
This is a consecutive packet number. This number is session-wide and will be the same in each
session's visualizer.

Packet type
Packet type such as “Bulk or Interrupt Transfer” or “Control Transfer”.

(Direction)
Can be either DOWN or UP. DOWN means that the packet is captured on its way down, that is,
from controlling application through device's driver to USB host controller and finally, to device. UP
means the opposite direction. Each packet is always captured twice: first on its way down and then
on its way up. Default filtering settings may eventually hide one of these captures.

Packet capture time
Packet capture time in current user's full date/time format.

Difference in seconds
Difference in seconds between the current packet and the previous packet. Note that the
previous packet is the packet with a previous consecutive number. A previous packet may be
missing in this and/or other data visualizer.

(N. Device Name)
An ordinal number and device name for multi-source sessions.

Status: 0xNNNNNNNN
Internal NT status code. Zero means success.

URB View visualizer supports Generic Filtering platform.

Exporting Data

URB View visualizer allows the user to export its contents to various text file formats. First, you need to
determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,

Device Monitoring Studio Documentation Data Processing

68

use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Packet View
This visualizer window consists of two parts. The top part displays monitored packets in a table. For each
packet, the following information is displayed:

Ordinal
This is a consecutive packet number. This number is session-wide and will be the same in each
session's visualizer.

Time
Packet Capture Time

Time Diff
Difference in seconds between the current packet and the previous packet. Note that the previous
packet is the packet with a previous consecutive number. A previous packet may be missing in this
and/or other data visualizer.

Direction
Can be either DOWN or UP. DOWN means that the packet is captured on its way down, that is,
from controlling application through device's driver to USB host controller and finally, to device. UP

Device Monitoring Studio Documentation Data Processing

69

means the opposite direction. Each packet is always captured twice: first on its way down and then
on its way up. Default filtering settings may eventually hide one of these captures.

Status
Internal NT status code. Zero means success.

Function
Packet type

Device
For multi-source sessions, this column shows the ordinal number and name of the source device.

The bottom part is built from several visualizers, depending on session type. For USB, URB View, HID
View, Mass Storage View, Still Image View and Communications View visualizers are present. For Serial,
Request View, MODBUS View and PPP View visualizers are present. Click on any packet in the top part to
see it decoded by each visualizer in the bottom part. Click on the tab to switch to the visualizer.

Packet View visualizer supports Generic Filtering platform.

Exporting Data

Packet View visualizer allows the user to export its contents to a text format. First, you need to select
packets you want to export. Use standard mouse or keyboard commands to select packets in a list or use
the Edit » Select All command to select all packets.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. The format of exported data is so-called
Tab-Separated Values, or TSV, which may be imported directly to spreadsheet applications, like Microsoft
Excel.

Statistics
This visualizer collects and displays various data statistics on monitored stream. A list of counters depend
on the session type.

USB

Packets Total/Sec

Device Monitoring Studio Documentation Data Processing

70

Packets Read/Sec
Packets Written/Sec
Bytes Total/Sec
Bytes Read/Sec
Bytes Written/Sec
Control: Bytes Total/Sec
Control: Bytes Read/Sec
Control: Bytes Written/Sec
Bulk: Bytes Total/Sec
Bulk: Bytes Read/Sec
Bulk: Bytes Written/Sec
Interrupt: Bytes Total/Sec
Interrupt: Bytes Read/Sec
Interrupt: Bytes Written/Sec
Isochronous: Bytes Total/Sec
Isochronous: Bytes Read/Sec
Isochronous: Bytes Written/Sec

Serial

Packets Total/Sec
Bytes Total/Sec
Bytes Read/Sec
Bytes Written/Sec
IO Packets/Sec

Network

Packets/Sec
Bytes Total/Sec
Bytes Received/Sec
Bytes Sent/Sec

By default, only some of these counters are displayed. To add more, click the Add/Remove Counter
button.

Bottom part of the visualizer displays the variable statistics. For each variable, the following is displayed:

Variable Name, line width and color, visibility flag. Click on the checkbox to toggle variable on or off.
Maximum value
Average value
Last value
Total
Scale

You can toggle each variable visibility by clicking on the checkbox next to variable's name. You can also
change the variable's color, line width and scale by double-clicking the variable to display the Variable
Properties window.

Click anywhere on the plot area to place a check mark (a so-called Static Line). After you place a static
line, you will see the momentary values for each variable at the top-right corner of the visualizer.

If you hold a Ctrl key while clicking on the plot area, you place a tracking line, which is bound to the
data and does not move.

To remove either the static or the tracking line, click on the far right part of the plot area, just under the
lines' informational area.

Device Monitoring Studio Documentation Data Processing

71

The visualizer displays three different kinds of data on the X-axis, sample number, packet number and
time mark. You can use the Display sample indices on X-axis option on Tools » Settings, General Tab to
toggle displaying the sample numbers on X-axis.

Advanced

Adjusting Output

You can change the scale of individual variables to adjust their representation on the chart. Use the
vertical scrollbar to change the Y-axis scale.

Use the following commands (available from context menu):

Auto Fit
When enabled, this option causes the plot to scale the visible data automatically so you always see
the minimum and maximum values on the screen. Auto fitting concerns all enabled variables and
may cause the Y-axis scale to change as you scroll or change the horizontal scale. The vertical
scrollbar adjustment continues to work in this mode as well.

Draw Lines
The plot is drawn using polylines - this is the fastest method available.

Draw Curves
The plot is drawn using splines, effectively smoothing data. This method consumes more processor
cycles and should be switched off if your computer becomes unresponsive. This method is
automatically switched off on small scales.

No Fill
The area under the graphic is not filled - again, this is the fastest possible method. It is automatically
chosen when you go to the smallest horizontal scales.

Solid Fill
The area under the graphic is filled with a solid color, being the slightly desaturated color of the
variable itself.

Gradient Fill
The area under the graphic is filled with a gradient. This is the slowest method, so it should not be
used if your computer becomes unresponsive.

The Edit » Clear View command deletes all data, including the statistics for each variable.

Navigating

Use the horizontal scrollbar to scroll the visible plot area. Use the + and - buttons to change the
horizontal scale (from 1:64 to 1:1).

Use the Edit » Go to Packet… and Go to Sample… (from popup menu) commands to navigate to
specific packet or sample correspondingly.

Capturing the Plot Data

You can save a copy of the visible data in the Statistics visualizer to the Clipboard or to the disk file. Use
t h e Edit » Copy and Edit » Export… commands to copy the picture to Clipboard or file
correspondingly. The picture copied to the Clipboard can be inserted into any application capable of
working with bitmaps. Edit » Export… command allows you to save the picture in JPEG, PNG, GIF, BMP
and TIFF formats.

Device Monitoring Studio Documentation Data Processing

72

Audio View
USB Audio visualizer parses packets and configuration descriptors for USB Audio (version 1.0) compliant
device. The following subclasses are supported - Audio Control (AC) and Audio Streaming (AS). The first
one is used to control and change the state of device. The second one is generally used for data
transmitting. Audio class descriptors are displayed in Configuration Descriptor pane.

The following control pipe requests are parsed for the audio class device:

SET_CUR (0x01)
GET_CUR (0x81)
SET_MIN (0x02)
GET_MIN (0x82)
SET_MAX (0x03)
GET_MAX (0x83)
SET_RES (0x04)
GET_RES (0x84)
SET_MEM (0x05)
GET_MEM (0x85)
GET_STAT (0xFF)

Audio View visualizer supports Generic Filtering platform.

You can select subclass (AudioControl or AudioStreaming) on Tools » Settings, General Tab page.

Exporting Data

Audio View visualizer allows the user to export its contents to various text file formats. First, you need to
determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Video View
USB Video visualizer parses packets and configuration descriptors for USB Video (version 1.1) compliant
device. The following subclasses are supported - Video Control (VC) and Video Streaming (VS). The first
one is used to control and change the state of device. The second one is generally used for data
transmitting. Video class descriptors are displayed in Configuration Descriptor pane.

Video View visualizer supports Generic Filtering platform.

Device Monitoring Studio Documentation Data Processing

73

You can select subclass (VideoControl or VideoStreaming) on Tools » Settings, General Tab page.

Exporting Data

Video View visualizer allows the user to export its contents to various text file formats. First, you need to
determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

HID View
This visualizer decodes Human Interface Device (HID) specific packets, displaying them in two schemes:
HID View and Report View.

HID View visualizer supports Generic Filtering platform.

HID View

In this scheme, the visualizer displays parsed HID Report descriptor requests and brief description of
each monitored HID packet.

Report View

In this scheme, the most detailed information for each monitored packet is displayed. For each variable
the bounded string, usage information from the usage table, logical and physical boundary values as
well as the variable value and measurement unit are displayed. Some fields may not be appropriate for
some packets.

Exporting Data

HID View visualizer allows the user to export its contents to various text file formats. First, you need to
determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files

Device Monitoring Studio Documentation Data Processing

74

MMC

BLANK (0xa1)
FORMAT_UNIT (0x04)
CLOSE_TRACK_SESSION (0x5b)
GET_CONFIGURATION (0x46)
GET_PERFORMANCE (0xac)
LOAD_UNLOAD_MEDIUM (0xa6)
MECHANISM_STATUS (0xbd)
PAUSE_RESUME (0x4b)
PLAY_AUDIO10 (0x45)
PLAY_AUDIO12 (0xa5)
PLAY_AUDIO_MSF (0x47)
READ_BUFFER_CAPACITY (0x5c)
PLAY_CD (0xbc)
READ_CD (0xbe)
READ_CD_MSF (0xb9)

SPC2

TEST_UNIT_READY (0x00)
REQUEST_SENSE (0x03)
INQUIRY (0x12)
MODE_SENSE6 (0x1a)
MODE_SENSE10 (0x5a)
EXTENDED_COPY (0x83)
LOG_SELECT (0x4c)
LOG_SENSE (0x4d)
MODE_SELECT6 (0x15)
MODE_SELECT10 (0x55)
PERSISTENT_RESERVE_IN (0x5e)
PERSISTENT_RESERVE_OUT (0x5f)
PREVENT_MEDIUM_REMOVAL (0x1e)
READ_BUFFER (0x3c)
RECIEVE_COPY_RESULTS (0x84)

Export the content in HTML format. This format saves all the original formatting.
ASCII Text Files

Copy of the window content in text format in ASCII encoding.
UNICODE Text Files

Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Mass Storage View
This visualizer parses and displays commands and data exchanged by the computer and devices
conforming to USB Mass Storage Bulk-Only device class and subclass. Specific commands from USB
Mass Storage CBI Transport are also supported. There are two levels of display offered by the visualizer:
Mass Storage Level and Command Level. The first one parses Mass Storage-specific structures, while the
second one parses commands exchanged between the host and device.

Mass Storage standard allows using several command set, including SCSI Primary Command Set, SCSI
Reduced Block Set and SCSI Multimedia Command Set. They are usually commonly referred as SCSI
Transparent Command Set.

The visualizer always tries to process the command using the current command set (reported by the
device). If it fails, it looks for the command in other supported command sets and parses it. In the latter
case, you see the warning displayed next to the parsed command. If multiple command sets include
definitions for the single command, it will be parsed using the first one that matches.

Supported Commands

The visualizer conforms to the following standards:

SCSI Primary Command Set 2 (SPC2)
SCSI Multimedia Command Set 2 (MMC2)
SCSI Reduced Block Command Set (RBC)

Below you will find the list of supported commands. If the command has a number next to its name, that
means there are several similar commands differing by the transfer length. The user has an option to
select the commands the parser processes in the Tools » Settings, Filtering Tab.

Device Monitoring Studio Documentation Data Processing

75

READ_CAPACITY (0x25)
READ_DISC_INFORMATION (0x51)
READ_DVD_STRUCTURE (0xad)
READ_FORMAT_CAPACITIES (0x23)
READ_HEADER (0x44)
READ_MASTER_CUE (0x59)
READ_SUB_CHANEL (0x42)
READ_TOC (0x43)
READ_TRACK_INFO (0x52)
WRITE10 (0x2a)
REPAIR_TRACK (0x58)
REPORT_KEY (0xa4)
RESERVE_TRACK (0x53)
SCAN (0xba)
SEND_CUE_SHEET (0x5d)
SEND_DVD_STRUCTURE (0xbf)
SEND_EVENT (0xa2)
SEND_KEY (0xa3)
SEND_CD_SPEED (0xbb)
SEND_OPC_INFO (0x54)
SET_READ_AHEAD (0xa7)
SET_STREAMING (0xb6)
STOP_PLAY_SCAN (0x4e)
WRITE_AND_VERIFY (0x2e)
READ12 (0xaa)
ERASE10 (0x2c)
GET_EVENT (0x4a)

RECEIVE_DIAGNOSTIC_RESULTS (0x1c)
RELEASE10 (0x57)
RELEASE6 (0x17)
REPORT_DEVICE_IDENTIFIER (0xa3)
LUNS(0xa0)
RESERVE10 (0x56)
RESERVE6 (0x16)
SEND_DIAGNOSTICS (0x1d)
SET_DEVICE_IDENTIFIER (0xa4)
WRITE_BUFFER (0x3b)

RBC

READ10 (0x28)
READ_CAPACITY (0x25)
SYNC_CACHE (0x35)
FORMAT_UNIT (0x04)
START_STOP_UNIT (0x1b)
WRITE10 (0x2a)
VERIFY10 (0x2f)

Some devices may use newer command set revisions. In this case one of the following occurs:

The parser will not be able to process the command correctly if its layout changed.
The parser will correctly process the command, but without new fields added in the newer revision.
The parser will not be able to process the command, not defined in the supported revision.

In all of three cases, the warning will be displayed.

Mass Storage View visualizer supports Generic Filtering platform.

Exporting Data

Mass Storage View visualizer allows the user to export its contents to various text file formats. First, you
need to determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

Device Monitoring Studio Documentation Data Processing

76

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Still Image View
This visualizer decodes Still Image specific packets.

Still Image View visualizer parses and displays commands and data exchanged by the device and host
over USB StillImage/MTP protocol. The parser supports standard PIMA 15740/ MTP commands. You can
configure filtering on Tools » Settings, Filtering Tab page.

Still Image View visualizer supports Generic Filtering platform.

Exporting Data

Still Image View visualizer allows the user to export its contents to various text file formats. First, you
need to determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Communications View
This visualizer decodes USB Communications Class packets and descriptors.

Communications View visualizer supports Generic Filtering platform.

Exporting Data

Communications View visualizer allows the user to export its contents to various text file formats. First,
you need to determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files

Device Monitoring Studio Documentation Data Processing

77

Copy of the window content in text format in ASCII encoding.
UNICODE Text Files

Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Request View
This visualizer is based on Custom View data visualizer. It supports serial sessions and displays all
monitored data packets and serial input/output control code packets.

Serial IOCTL packets, which are used to configure a serial device or retrieve its parameters are decoded
and displayed in easy-to-use table.

Data packets are followed by the full data dump.

User Experience

See the section Custom View User Experience for more information on user interaction with Request
View data visualizer.

Visual Schemes

Request View allows the user to customize the appearance of all its visual elements. Use the Coloring
command from the context menu to jump to the Coloring customization section.

Configurable Options

T h e Request View defines the following options which control the amount of data the visualizer
provides:

Device Monitoring Studio Documentation Data Processing

78

Option Default
Value

Description

Display
empty
reads

Off Indicate whether the read requests that complete without data
should be included.

Display
I/O
requests
without
data

Off All I/O requests usually carry interesting information only on
one way (either DOWN or UP, depending on the request). If
this option is OFF, request with no data is not included in the
output.

Display
I/O
requests

On Indicate if serial IOCTL requests are included.

Display
connect
and
create
requests

On Indicate whether connect and create requests are included.

Display
down
reads

Off Normally, read requests are only displayed on their way UP,
where they contain data retrieved from the device. Enabling
this option will include read requests on their way DOWN as
well. Note that failed read requests are always included.

Display
up writes

Off Normally, write requests are only displayed on their way
DOWN, where they contain data to be sent to the device.
Enabling this option will include write requests on their way UP
as well. Note that failed write requests are always included.

Display
line
numbers

Off Configures the display of line numbers for the visualizer.

Legacy Visualizer

The previous version of Request View data visualizer (which is not based on Custom View) is still
available under the name Request View (Legacy).

Console View
This visualizer is based on Custom View data visualizer. It supports serial sessions and works as the text
console, showing all transmitted and received data as ASCII characters.

Visual Schemes

Console View allows the user to customize the appearance of all its visual elements. Use the Coloring
command from the context menu to jump to the Coloring customization section.

User Experience

See the section Custom View User Experience for more information on user interaction with Console
View data visualizer.

Legacy Visualizer

The previous version of Console View data visualizer (which is not based on Custom View) is still

Device Monitoring Studio Documentation Data Processing

79

available under the name Console View (Legacy).

Data View
This visualizer contains two panes. The top pane displays what was read from the device, and the bottom
pane displays the data written to the device.

Use the mouse to move the splitter to change the relative size of both panes.

Standard Edit commands, such as Edit » Copy and Edit » Export… are supported for both panes.

If the last line of information is visible, then the window is automatically scrolled every time a new
portion of information is appended to it. To stop automatic scrolling, just scroll the window so the last
line is not visible anymore. To resume automatic scrolling, scroll to the very end or just press the End
key.

Either pane can have a selection. To make a selection use the mouse - click at the beginning of the
selection and drag to the end. If you move the mouse away from the window during dragging, the
window will scroll its contents. If the selection is present, the copy and export functions will work only on
the selected part of the window.

Data View visualizer supports Generic Filtering platform.

Serial Bridge

When used with the Serial Bridge monitoring session type, the top pane displays the data the first
bridged device sends and the bottom pane displays the data, which the second bridged device sends.

Exporting Data

Data View visualizer allows the user to export its contents to various text file formats. First, you need to
determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Both panes of Data View visualizer are copied or exported separately.

MODBUS View
MODBUS is an application layer messaging protocol, positioned at level 7 of the OSI model that provides
client/server communication between devices connected on different types of buses or networks.

Device Monitoring Studio Documentation Data Processing

80

The industry’s serial de facto standard since 1979, MODBUS continues to enable millions of automation
devices to communicate. Today, support for the simple and elegant structure of MODBUS continues to
grow. The Internet community can access MODBUS at a reserved system port 502 on the TCP/IP stack.

The Modbus protocol has two different types of interaction: ASCII/RTU. In ASCII mode data is wrapped
into the packet and transmitted as an ASCII string. The first byte of packet is used for identification – its
value should be equal to 0x3A . Packet ends with two special bytes - 0x0D and 0x0A .

MODBUS View visualizer is compliant with MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1a.
There are several different implementations of Modbus Protocol. Different companies implement and
document their own specific extensions to Modbus Protocol. Function and command names could vary:
for example, Preset Single Register command in one implementation equals to Write Single Register
command in the standard.

MODBUS View visualizer parses MODBUS protocol requests and responses, while the MODBUS Send
Module can be used to construct and send MODBUS requests and responses. The visualizer is part of the
monitoring infrastructure, which you can use it to monitor the existing connection between the
application and a serial device. The MODBUS Send Module, on the other hand, allows you to control
the MODBUS-compliant device without the need of any third party controlling application. In this case,
the MODBUS View visualizer, if configured, can be used to see the requests sent by the MODBUS Send
Module and packets the device responds with.

You can set the filtering on Tools » Settings, Filtering Tab page.

The following settings govern the behavior of the visualizer (they all are controlled from the Tools »
Settings, General Tab):

Truncate register/coil/request list if it is too long - if there are many items in a request, only several
first items will be displayed and others omitted.

Add base offsets for registers, discrete inputs, etc. - in some implementations index of input register,
holding register or discrete input is interpreted by a device like an offset. In this case, the value is
appended to a so-called “base address” by the device. For example if you specify holding register 5
in your request, it can be parsed as register 40005 by a device (for a base address of 40000). The
visualizer can be configured to account for this case using this option.

Parse request on WRITE (responses on READ) direction – set this option for standard parsing –
requests will be parsed as if they sent from host to device (“write” direction) and responses are
parsed as if they are received from device (“read” direction). However, in some cases for debugging,
it is useful to “revert” the flow. Deselect this option if you want request be parsed on the “read” way
and responses on “write” way (host is responding to the device).

Concatenate packets - set this option if packets are sent split (for example one packet with 8 bytes
of payload is split into two packets: 2 + 6 bytes). The visualizer will try to concatenate blocks of data.
Collected packet will be parsed and displayed when LRC/CRC of collected data is valid.

RTU mode - set this option if you have enabled “Concatenate packets” option (see above) and is
using RTU mode. Visualizer can't automatically determine the mode when packets are sent split.
When “Concatenate packets” option is disabled, this option doesn't affect the visualizer behavior.

MODBUS View visualizer supports Generic Filtering platform.

Exporting Data

MODBUS View visualizer allows the user to export its contents to various text file formats. First, you need
to determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Device Monitoring Studio Documentation Data Processing

81

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

PPP View
The Point-to-Point Protocol (PPP) provides a method for transmitting datagrams over serial point-to-
point links. PPP is comprised of three main components:

1. A method for encapsulating datagrams over serial links.
2. A Link Control Protocol (LCP) for establishing, configuring, and testing the data-link connection.
3. A family of Network Control Protocols (NCPs) for establishing and configuring different network-

layer protocols.

The PPP View visualizer is used to parse and display the PPP packets (such as requests, responses,
options etc.).

PPP packet may have encapsulated frames with data inside. It is called “payload”. Payload is formed
using different protocols. There are several predefined protocols (such as LCP/ Novell IPX/ AppleTalk
etc.).

The current version of the visualizer supports the following protocols:

1. Novell IPX (0x002b)
2. OSI Network Layer Control Protocol (0x8023)
3. DECnet Phase IV Control Protocol (0x8027)
4. Appletalk Control Protocol (0x8029)
5. Link Control Protocol (0xc021)
6. Password Authentication Protocol (0xc023)
7. Link Quality Report (0xc025)
8. Challenge Handshake Authentication Protocol (0xc223)
9. Multilink Protocol (0x003d)

10. Compression Control Protocol (0x80fd)
11. Extensible Authentication Protocol (0xc227)
12. NETBIOS Protocol (0x03f)

PPP View visualizer supports Generic Filtering platform.

Exporting Data

PPP View visualizer allows the user to export its contents to various text file formats. First, you need to
determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,
use the mouse to select a portion of the window.

Device Monitoring Studio Documentation Data Processing

82

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Line View
This visualizer displays the state of the serial/modem control lines. The following lines states are
displayed:

RTS Request to Send line indicator
CTS Clear to Send line indicator
DSR Data Send Ready line indicator
DCD Data Carrier Detect line indicator
DTR Data Terminal Ready line indicator
RI Ring line indicator

The gray circle shows that the line state is not determined at this moment. The red circle shows that the
line is at low level and green circle shows the line is at high level.

Visualizer Positioning

This visualizer is unlike all others in the way it positions itself on the screen. Line states are displayed in
the program status bar. In addition, you cannot configure more than one Line View visualizer for each
monitoring session. When there are multiple monitoring sessions running, Line View visualizer displays
line states for the currently selected monitoring session.

Request View (Legacy)
This visualizer displays all monitored packets, including PnP packets, data transfer packets and serial
input/output control code packets. All monitored data can be displayed in one of two schemes - Basic or
Complete. In Basic scheme, only general information about a packet is displayed, while in Complete
scheme full packet information, including the binary data attached to the packet is displayed.

If the last line of information is visible, then the window is automatically scrolled every time a new
portion of information is appended to it. To stop automatic scrolling, just scroll the window so the last
line is not visible anymore. To resume automatic scrolling, scroll to the very end or just press the End
key.

Request View (Legacy) visualizer supports Generic Filtering platform.

Exporting Data

Request View (Legacy) visualizer allows the user to export its contents to various text file formats. First,
you need to determine which part of the window you need to export.

If you plan to export the whole contents of the window, make sure you have no selection. Otherwise,

Device Monitoring Studio Documentation Data Processing

83

use the mouse to select a portion of the window.

Execute the Edit » Copy command to copy the selected content to the Clipboard. Execute the Edit »
Export… command to export the selected content to a file. In the latter case, you may select the format
to use during exporting:

HTML Files
Export the content in HTML format. This format saves all the original formatting.

ASCII Text Files
Copy of the window content in text format in ASCII encoding.

UNICODE Text Files
Copy of the window content in text format in UNICODE (UTF-16 LE) encoding.

In addition, use the Edit » Export Binary command to export the content of the individual packet in
binary format.

Console View (Legacy)
This visualizer works as the text console, showing all the received data as ASCII characters.

HTTP View
This visualizer is based on Custom View data visualizer. It supports network sessions and parses HTTP
protocol requests and responses.

User Experience

See the section Custom View User Experience for more information on user interaction with HTTP View
data visualizer.

Visual Schemes

HTTP View allows the user to customize the appearance of all its visual elements. Use the Coloring
command from the context menu to jump to the Coloring customization section.

Data Recording
Data recording allows you to capture all (or part) of monitored data to the disk file for subsequent
analysis. This section tells you how to create log files. The Playback section tells you how to play back
previously recorded log files. The Tools » Settings, Recording/Playback Tab section describes Data
Recording and Playback configuration options.

Log File Structure

Device Monitoring Studio log files have extension .dmslog8 . New log is automatically started each time
you add Data Recording processing module to the monitoring session. Each log consists of one or
more files. Device Monitoring Studio supports the following logging modes:

Unlimited Mode

In unlimited mode all data is being written to a single log file and is never deleted. The maximum
supported log size in this mode is 159.92 GB. This is the default mode.

WARNING

Device Monitoring Studio Documentation Data Processing

84

If your file grows up to the maximum limit, a multiple-files limited mode is automatically turned on
and new part file is created.

Limited Modes

In addition to a single-file unlimited mode described above, Device Monitoring Studio supports single-
file and multiple-files limited modes.

You may specify either the file size limit or a logging duration limit. Whenever the specified limit is
reached, the following happens:

In single-file limited mode some of the oldest data gets deleted and new data is getting written on
top of it.

In multiple-files limited mode, a current file (called a log part file) is closed and new log part file is
created. Optionally, the oldest part file may also be deleted.

NOTE
In single-file limited mode, the minimum allowed file size is 80 MB. The limits you specify will not be
applied until the log grows higher than 80 MB.

Configuring Data Recording

Data recording is taking place whenever a Data Recording processing module is added to a monitoring
session. If you remove this processing module from a running session, recording stops; if you add this
module to a running session, recording starts to a new log file. You cannot add more than one Data
Recording module to a session.

For convenience, the following commands may be used as alternative:

Tools » Start/Resume Recording
Adds a Data Recording processing module to the current monitoring session or resumes a paused
data recording.

Tools » Pause Recording
Pauses current recording.

Tools » Stop Recording
Removes a Data Recording processing module from the current monitoring session.

If you want to record new monitoring session from the very start, add the Data Recording processing
module when you configure new monitoring session in Session Configuration Window.

Data Recording Options

Data Recording uses the log folder to store all log files it creates. This folder may be changed on the
Tools » Settings, Recording/Playback Tab settings page.

In addition, a log file path may be changed for an individual session using Data Recording processing
module configuration page:

Device Monitoring Studio Documentation Data Processing

85

Enter the name of the log file or leave the field empty to use the default.

Other options allow you to set the optional log file limits:

No limits enforced
The logging will work in single-file unlimited mode.

Enforce size limit
Enter the maximum size of a single part file.

Enforce time limit
Enter the maximum length of a single part file.

If size or time limit is specified, you can also specify if logging uses single-file limited mode or multiple-
files limited mode:

Single file
Whenever specified limit is reached, new data override oldest data stored in a single log file.

Multiple files
Whenever specified limit is reached, a new part file is created and logging continues to the new file.
You can also specify the maximum amount of part files to keep or leave it empty to keep all part
files.

Save to Log

This option allows you to save all monitored data to the log file. For example, you monitored a device for
a while without writing a log file and then decided to write all monitored data to a log for subsequent
analysis.

Execute the Tools » Save to Log command and configure an output log file as described in the
Recording Options topic.

WARNING
Amount of data available for saving depends on the current settings in the Tools » Settings, Data
Processing Tab.

Raw Exporter
Raw Exporter data processing module works like lower part of the Structure View data visualizer, but

Device Monitoring Studio Documentation Data Processing

86

without displaying any information on the screen. Use this exporter when you need to parse monitored
data according to some predefined or custom protocol, apply custom filters and copy the resulting
binary packet data to the binary file.

Configuring Raw Exporter

This page allows you to specify location of the output binary log file.

Enter the location of the output log file or click the Browse button. Select Overwrite option to force
overwriting the file and select No caching option to disable OS write caching (greatly affects
performance).

Export Filter

See the Display Filter settings for more binary logging configuration info.

Root Protocol

See the Root Protocol settings for more binary logging configuration info.

Text Exporter
Text Exporter data processing module works like upper part of the Structure View data visualizer, but
without displaying any information on the screen. Use this exporter when you need to parse monitored
data according to some predefined or custom protocol, apply custom filters and copy the resulting
binary packet data to the text file.

Configuring Text Exporter

This page allows you to specify location of the output text log file.

Device Monitoring Studio Documentation Data Processing

87

Enter the location of the output file or click the Browse button. Select Overwrite option to force
overwriting the file and select No caching option to disable OS write caching (greatly affects
performance).

Export Filter

See the Display Filter settings for more text logging configuration info.

Root Protocol

See the Root Protocol settings for more text logging configuration info.

Advanced
Generic Coloring

Device Monitoring Studio provides a generic mechanism that can be used to change the appearance of
different visual elements of some data visualizers.

Each data visualizer that supports generic coloring defines a set of items for which you may set up font,
foreground and background color.

You can configure visual element appearance and coloring schemes in the Tools » Settings, Coloring
Tab.

Coloring Tab

Device Monitoring Studio Documentation Data Processing

88

The list of all supported data visualizers is displayed on the left. Select a data visualizer to configure the
appearance of its visual elements.

After you select a visualizer, you will see the list of all its visual elements on the right of the window. For
each element, you can specify the font face, font size and style as well as foreground and background
color.

Working with Schemes

A scheme is a collection of all appearance settings for a given visualizer. You can select the scheme from
the combobox at the top of the page. A scheme named “Default” is automatically created for every data
visualizer and allows you to quickly return to the original appearance settings.

You can create your own schemes. To create a scheme, type the scheme name in the combobox and
press the Save button. To delete a scheme, select a scheme from the list and press the Delete button.
Note that you cannot delete a built-in scheme.

Data Recording (Previous version)
Data recording allows you to capture all (or part) of monitored data to the disk file for subsequent
analysis. This section tells you how to create log files. The Playback section tells you how to play back
previously recorded log files. The Tools » Settings, Recording/Playback Tab section describes Data
Recording and Playback configuration options.

Log File Structure

Every single log file consists of several streams. Each time you start a monitoring session with Legacy
Data Recording processing module, new log file is created for it. Sessions Tool Window lists all data
processing modules for a session, including the Legacy Data Recording. The State column shows the
total amount of data saved to a log file in bytes. It also allows you to press the End Stream button to
stop current stream. The button changes to New Stream after that. Press it again to start new stream

Device Monitoring Studio Documentation Data Processing

89

within the same log file.

Configuring Data Recording

Data recording is taking place whenever a Legacy Data Recording processing module is added to a
monitoring session. If you remove this processing module from a running session, recording stops; if you
add this module to a running session, recording starts to a new log file. You cannot add more than one
Legacy Data Recording module to a session.

If you want to record new monitoring session from the very start, add the Legacy Data Recording
processing module when you configure new monitoring session in Session Configuration Window.

Configuring Recording Options

Legacy Data Recording uses the log folder to store all log files it creates. This folder may be changed
on the Tools » Settings, Recording/Playback Tab settings page.

In addition, a log file path may be changed for an individual session using Legacy Data Recording
processing module configuration page:

Enter the name of the log file or leave the field empty to use the default.

Device Monitoring Studio Documentation Data Processing

90

Filtering
Capture Filter
A monitoring session may have a special filter, called capture filter, configured. This filter is applied at the
earliest point of time, before the monitored packet ever sent for data processing, including Data
Recording. It allows the user to effectively filter unneeded packets out before sending them to expensive
processing. Capture filter uses currently loaded protocol definitions.

Capture filter is specified in the Session Configuration Window.

You may select one of the pre-defined filters in the Capture Filter combobox, or press the Edit button
to open the Capture Filter Configuration Window:

Use this window to select a display filter from a list, or enter the filter string manually, give it a name and
save.

It is allowed to add, change and remove the capture filter of a running session.

Limitations

Serial Bridge and Remote data sources do not support capture filters.

Capture Filter Syntax

Capture filter expression is an expression that can reference fields of a bound protocol. It should
evaluate to a boolean value. If the result of the expression is true , a packet is allowed to “pass”,
otherwise it is silently discarded. A result of the expression is automatically cast to boolean according to
the following rules:

Device Monitoring Studio Documentation Filtering

91

Expression
Type

Conversion Rules

boolean Used as is
integer Zero is converted to false , any other value converted to true
string Empty string is converted to false , any other string is converted to

true

Reference An invalid reference (a reference to non-existing field) is converted to
false , otherwise it is true

Filter expression supports special kinds of immediates in addition to standard ones:

Immediate Sample
IPv4 address 127.0.0.1

IPv6 address fe80::a4e0:281f:768b:ca30

MAC address 56:15:FB:B7:EF:99

When the user types new filter expression, available fields are automatically suggested using the auto-
completion engine. However, this engine is limited in its functionality and the user is advised to consult
the source code of used protocols.

Examples

Serial Monitoring

The following filter passes only Serial Input/Output Control packets (IOCTL). This expression evaluates to
true if and only if there is a sub-field io in the bound serial field:

C++
serial.io

Then following filter passes only Write packets:

C++
serial.Type == 4

The following filter passes only packets that has non-empty payload:

C++
(serial.Direction == "Up" && serial.Type == 3) || (serial.Direction == "Down" && serial.Type ==
4)

USB Monitoring

The following filter passes only URB packets (discards PnP packets, for example):

C++
usb.urb

Network Monitoring

The following filter passes only IP traffic:

C++
ipv4 || ipv6

Device Monitoring Studio Documentation Filtering

92

The following filter passes only packets sent to or received from 192.168.0.1 :

C++
ipv4.SourceAddress == 192.168.0.1 || ipv4.DestinationAddress == 192.168.0.1

Generic Filtering (Legacy)
Device Monitoring Studio provides a generic mechanism that can be used to filter the output of different
visualizers. You can configure several aspects of each supported visualizer.

You can configure filters and schemes in the Tools » Settings, Filtering Tab.

Each data visualizer that supports Generic Filtering checks each incoming packet if it suits the criteria
specified by one or more filters. If packet fails to pass at least one filter rule, it is silently discarded.

Most data visualizers have non-empty default rule set that usually hides packets of lower interest, like
answers for outgoing packets (that is, on their way UP).

Filtering Tab

The list of all filter groups is displayed on the left. Select a filter group to view its filters.

Click on the check box to enable or disable a particular filter. Some filter items have more than one
check box, for example, you can configure whether the particular request is processed on its way DOWN
or UP.

Click on the checkbox's header to enable/disable all checkboxes.

Working with Schemes

A scheme is a collection of specific filter settings. Each filter group has its own list of schemes. You can
select the scheme from the combobox at the top of the page. Three built-in schemes appear for each

Device Monitoring Studio Documentation Filtering

93

filter group:

Default
A default scheme sets each filter state to the default state. This scheme is selected by default for
each filter group.

Display All
This scheme enables all filters - as a result, visualizers that use this filtering group will process all
types of packets.

Display None
This scheme effectively turns off all filters.

You can create your own filtering schemes. To create a scheme, type the scheme name in the combobox
and press the Save button. To delete a scheme, select a scheme from the list and press the Delete
button. Note that you cannot delete a built-in scheme.

Per-Visualizer Scheme Application

In addition to system-wide filtering scheme selection, you can also apply a specific filtering scheme to a
particular visualizer. To apply a filtering scheme, right-click on the visualizer window to bring up the
popup menu (you should already have a running monitoring session), select Filtering » Group Name »
Filtering Scheme. The selected filtering scheme will be applied to this visualizer only and will not affect
any other opened visualizers as well as newly opened ones.

If you want to reset a filtering scheme to the one currently configured in the Filtering Tab for this
visualizer, select the “Current” filtering scheme from the popup menu.

Device Monitoring Studio Documentation Filtering

94

Advanced Features
Network Monitoring
Packet Builder

Network Monitor allows you to construct one or more packets and send them via the selected adapter
to the network. New packets are created based on a template. Network Monitor comes with a set of
predefined templates:

ARP Packet
IP Packet
IPv6 Packet
TCP Packet
UDP Packet
DHCP
DHCP v6
ICMP
ICMP v6
DNS
LLMNR
NbtNs
NbtSs

Template is an empty packet of some type, that is a packet, which does not have any payload, but does
have the infrastructure: flags, sizes and selectors.

A template may be used as a starting point to construct more complex packet. For example, you may
start with an IP packet template and eventually construct an HTTP packet. You may also use this
technique to construct packets for user-defined protocols (if they are loaded into Network Monitor).

A constructed packet may be saved as a template using the Packet Builder » Save as Template…
command.

Packet Editing

After the packet is added to the list, you may edit it either using the binary representation (lower pane)
or its decoded form (upper pane). The binary pane also supports copying and pasting, so you can copy a
monitored packet from one of data visualizers and paste it into the binary pane to get a copy of the
packet. This copy may later be edited and sent back to the network.

Both panes are synchronized: you can edit the same packet in one or both panes.

NOTE
Some protocols have a checksum field that is used to check if the packet is valid or not. Network
Monitor provides automatic checksum calculation for IP and TCP packets. You must manually
compute and update checksum for any other kind of packet that have checksum incorporated.
Other protocols also have payload size. Network Monitor does not automatically update any size
field!

The upper pane displays the packet contents according to the loaded protocol definition files. Click on
the small plus sign to expand a sub-tree and click on the small minus sign to collapse the sub-tree.
Double-click the line to edit the value. After you finish entering the new value, click the Enter key to save
changes or Esc key to discard them.

Device Monitoring Studio Documentation Advanced Features

95

You are restricted to editing only the “leaf” values (fields that cannot be further expanded). In addition,
Network Monitor has built-in parsers for the following network addresses:

MAC address
IPv4 address
IPv6 address

For these fields, you may double-click the address field and enter the new value directly (like 127.0.0.1).
Your input will be parsed accordingly.

Sending Packets

Use either the Packet Builder » Send Packet… command or Packet Builder » Send All Packets…
command to send the prepared packets to the network.

First, select the adapter you would like to use for sending. Other options let you ignore the specified
packet delay, enable loop mode and specify whether you want to automatically close the Send Packets
window after all packets are sent.

To start sending, press the Start button. To stop sending packets, press the Stop button.

Saving and Loading Packets

Network Monitor allows you to save the prepared packet to a file (in the binary form). You may later
load this packet from a file. This feature also allows you to treat any binary file as contents of a packet.

In addition to binary export, you may copy the decoded value or the entire line to the Clipboard by
bringing up the context menu and selecting either the Copy Value or Copy Line commands.

USB Monitoring
Device Descriptor

Device Monitoring Studio Documentation Advanced Features

96

This tool window displays the decoded USB device descriptor. You can scroll the contents of the window
to view the whole information if it is larger than window. Use the keyboard or mouse to select the text in
the window and select the Edit » Copy command to copy the selected text into the Clipboard.

Displayed Information

This window displays the following information:

Connection Information
Port: hub port number
Speed: device speed (Low Speed, Full Speed, High Speed or Super Speed)
Device address: device bus address
Open pipes: the number of open pipes
Connection status: the status of the connection

Device Descriptor
USB Version: USB compatible version (1.1, 2.0 or 3.0)
Device class: device class code and description
Device subclass: device subclass code and description
Device protocol: device protocol code and description
Control pipe max size: the maximum size of the control pipe transfer
Vendor ID: USB consortium-assigned vendor identifier
Product ID: vendor-assigned product ID
Product version: vendor-assigned product version
Manufacturer: manufacturer name, taken from string descriptor
Product: product name, taken from string descriptor
Serial Number: product serial number, taken from string descriptor
Configurations: the number of supported configuration

Parsing Identifiers

The Device Monitoring Studio uses the usb.ids file, kindly provided by Vojtech Pavlik vojtech@suse.cz
and Stephen J. Gowdy gowdy@slac.stanford.edu, to properly parse numeric identifiers into human-
readable string values.

The file is installed into the product installation folder and is automatically scanned on startup. The
mentioned file is frequently updated on-line. Please visit the link from time to time to download the
most recent version.

Configuration Descriptor

Device Monitoring Studio Documentation Advanced Features

97

http://www.linux-usb.org/usb.ids
mailto:vojtech@suse.cz
mailto:gowdy@slac.stanford.edu

This tool window displays the decoded USB configuration descriptor, which consists of configuration,
interface and endpoint descriptors. You can scroll the contents of the window to view the whole
information if it is larger than window. Use the keyboard or mouse to select the text in the window and
select the Edit » Copy command to copy the selected text into the Clipboard.

Displayed Information

This window displays the following information:

Configuration Descriptor
Number of interfaces: total number of supported interfaces
Configuration value: configuration ordinal number
Attributes: device attributes, separated by comma
Max power: maximum power consumption, in mA

Interface Descriptor: N, Alternate Setting: M
Number of endpoints: the number of endpoints (pipes)
Interface class: interface class code and description
Interface subclass: interface subclass code and description
Interface protocol: interface protocol code and description
Endpoint address X, Input (Output), Type (Bulk, Interrupt or Isochronous), max packet size: Z, poll
period - for each endpoint

Parsing Identifiers

The Device Monitoring Studio uses the usb.ids file, kindly provided by Vojtech Pavlik vojtech@suse.cz
and Stephen J. Gowdy gowdy@slac.stanford.edu, to properly parse numeric identifiers into human-
readable string values.

The file is installed into the product installation folder and is automatically scanned on startup. The
mentioned file is frequently updated on-line. Please visit the link from time to time to download the
most recent version.

Dependent Devices

This tool window displays the tree of devices created by operating system for a device selected in
Devices Tool Window. At the tree root, the selected USB device is displayed. If an operating system
creates one or more other devices, they are displayed as children of the selected device.

For each device in the tree, the following three options are available for you: you can restart the device,
view its properties through Device Manager or copy the full device name into the Clipboard.

NOTE

Device Monitoring Studio Documentation Advanced Features

98

http://www.linux-usb.org/usb.ids
mailto:vojtech@suse.cz
mailto:gowdy@slac.stanford.edu

Please note that operating system can block the restart request if any other program actively uses
the selected device.

HID Descriptor

This tool window displays the decoded USB HID descriptor, available for devices belonging to USB HID
class. This window displays HID Report descriptors. You can scroll the contents of the window to view the
whole information if it is larger than window. Use the keyboard or mouse to select the text in the
window and select the Edit » Copy command to copy the selected text into the Clipboard.

HID Send

HID Send module allows the user to directly communicate with HID devices. The user may query HID
device parameters, construct and send HID reports.

First, select the device from the Device drop-down. Then select a function from the Function drop-
down. Select the report type and provide any additional parameters (parameters will automatically
appear when corresponding function is selected).

Several functions require the report bytes to be specified.

When you finish configuring the request, click the Send button. You will see the operation result in the
result pane.

Scripting Support

Device Monitoring Studio Documentation Advanced Features

99

HID Send module may be fully controlled with scripting. Please refer to the documentation of HID
Manager Object for more information.

Serial Monitoring
Serial Device Information

This tool window displays the information for the selected serial device. You can scroll the contents of
the window to view the whole information if it is larger than window. Use the keyboard or mouse to
select the text in the window and select the Edit » Copy command to copy the selected text into the
Clipboard.

Displayed Information

This window displays the following information:

Max. TX Queue
Specifies the maximum size, in bytes, of the driver's internal output buffer. A value of “none”
indicates that the serial provider imposes no maximum value.

Max. RX Queue
Specifies the maximum size, in bytes, of the driver's internal input buffer. A value of “none” indicates
that the serial provider imposes no maximum value.

Max. Baud Rate
Specifies the maximum allowable baud rate, in bits per second (bps). A value of “configurable”
means the user can set any baud rate.

Provider
Specifies the specific communications provider type.

Capabilities
Specifies a list of the capabilities offered by the provider.

Settable Parameters
Specifies a list of the communications parameters that can be changed.

Baud Rates
Specifies a list of the baud rates that can be used.

Data Bits
Specifies a list of the number of data bits that can be set.

Stop Bits

Device Monitoring Studio Documentation Advanced Features

100

Specifies a list of the stop bit that can be selected.
Parity

Specifies a list of the parity settings that can be selected.
Current Tx Queue

Specifies the size, in bytes, of the driver's internal output buffer. A value of “unavailable” indicates
that the value is unavailable.

Current Rx Queue
Specifies the size, in bytes, of the driver's internal input buffer. A value of unavailable indicates that
the value is unavailable.

Compatibility Notes

Although the device may seem to report specific combination, this is not always the case. For example, if
the device reports supporting data bits as “5, 6, 7, 8” and stop bits as “1, 1.5, 2 stop bits” it does not
mean that it will support some specific combination, such as “8 bit 2 stop bits”. There is no way in
Windows to determine whether the specific combination is supported by hardware.

Although the serial device may seem to report the specific settings combination and even may actually
support it, it does not mean that the device connected to this serial port will support it as well.

Custom Communication Mode

In addition to a number of built-in session types supported by Device Monitoring Studio for serial
monitoring, the user may also define custom rules for packet joining and splitting.

This is done by means of TypeScript (or JavaScript) custom code. This topic describes the specifications
the custom script must adhere to. First, in order to start editing a custom script, the user must select the
“Custom” session type in corresponding dialog and then press the Edit button.

The following window appears:

Use this window to edit a custom script. A window automatically highlights syntax errors. Use your

Device Monitoring Studio Documentation Advanced Features

101

mouse to hover over a highlighted error to see explanation.

If you have a custom script stored in a separate file, click the Load from File button to load it. If you
need to store the custom script outside of Device Monitoring Studio, click the Save to File button. To
reset to default sample implementation, click the Reset button.

When you open this window for the first time, a sample script is automatically loaded. It contains an
implementation of a simple packet splitter that ends a packet whenever a character 0A is received. The
code contains enough comments and should be self-explanatory.

Custom Splitter Code Structure

Serial source creates two isolated execution environments upon session start. One execution
environment is used to process read requests (received data) and another is used to process write
requests (sent data). These environments are isolated from each other and from any other scripts
running in Device Monitoring Studio. That means that they cannot share any variables and call functions
from different environments.

After an execution environment is created, a function called createSplitter is called. It must have the
following signature:

TypeScript
function createSplitter(type: PacketType): IPacketSplitter;

Where PacketType is defined as:

TypeScript
enum PacketType {
 Read,
 Write
}

and IPacketSplitter as:

TypeScript
interface IPacketSplitter {
 addData(data: Uint8Array, splitPacket: (position: number) => void): void;
}

createSplitter function is passed a splitter type (either PacketType.Read or PacketType.Write) and
must create an instance of a class that implements the IPacketSplitter interface.

For each captured data block, IPacketSplitter.addData method is called. It is passed a copy of data
block and a function to be called when custom code decides there is a start of a new packet in this data.
splitPacket function must be called with an offset within the passed data block. It must be between 0
and data block size (inclusive).

Please refer to the sample code for more details.

Data Repeater

Data Repeater is a special data processing module, which may be added to a serial or serial playback
monitoring session. When added, it requires the user to provide a port where read packets should be
sent and a port where write packets should be sent. The user may use the same serial device for both
packet types.

Device Monitoring Studio Documentation Advanced Features

102

When the monitoring session is started, all captured data is redirected (repeated) to given serial
device(s).

Serial Terminal

Serial Terminal module implements the serial terminal emulation, which is built into the Device
Monitoring Studio user interface.

You can configure as many serial terminal sessions as you need, with a maximum of one session for
every serial device installed on your computer. The Serial Terminal supports various serial port settings,
including baud rate, parity, flow control, etc.

Create a new terminal session using the Tools » Serial Terminal » New Terminal Session command.
The Serial Terminal Session Configuration Window is displayed to let you configure new session. After
the session is created, it is added as an entry in the Serial Terminal root menu. The session window is
opened in client area.

In addition, you may right-click the serial device in Devices Tool Window and select the Start Terminal…
command.

Immediately after the session is created, the Serial Terminal starts listening for incoming data from the
serial device. All received data are displayed in the terminal window.

To send data to the serial device, start typing it on the keyboard. The echo option, which is controlled by
the corresponding option in a context menu, governs the echoing of the sent characters. You may find it
useful in some situations. It is recommended, although, to turn off the option if the device you are
communicating with provides its own echoing.

You can also send the contents of a text files to the serial device by using the Send File… command in
the context menu. You can select one of the two send methods. First of them will split file contents to
multiple lines and send them to device sequentially (with 0x0D symbol in the end of each line). Second
method will send the file contents without splitting (but using fixed size buffers). To select the method
please go to Tools » Settings, General Tab and check the “Send text lines to file one by one” option.

The data from file is sent as sequential blocks of some finite size. You can specify the block size with the
Block size option (“Serial Terminal” group in Tools » Settings, General Tab). The minimum value is 1 and
maximum is 65535 bytes. The default block size is 1024 bytes.

Use the Advanced Send option in context menu to enter the pattern to send. In addition to pattern, you
may specify delays and looping conditions.

Integration with Serial Monitoring

Device Monitoring Studio Documentation Advanced Features

103

The Serial Terminal module works independently from the serial monitoring module, allowing you to see
the “low-level” of established serial terminal session. It may be useful to use both modules at the same
time for a single serial device to solve a number of tasks, including the following:

Debugging the serial interface of a hardware device attached to the serial port.

Decoding the binary response to a text request.

Working in conjunction with a user script running in the Device Monitoring Studio's environment.
See the section below for more information on scripting.

Starting with version 8, the integration is even more tight - when you configure a serial monitoring
session, you have an option to automatically launch terminal session with hidden or visible window.

Scripting Support

The Serial Terminal module exposes the fully scriptable object to be used by scripts running in the
Device Monitoring Studio environment. Please consult to the Scripting section for more information on
built-in scripting and to the Serial Terminal Object section for description of the interfaces, exposed by
the Serial Terminal module.

Session Configuration Window

This dialog allows you to configure new serial terminal session.

Select the serial device from the list of detected serial devices, specify connection baud rate, parity, byte
size and a number of stop bits, as well as flow control operation and press the Connect button.

Optionally enter the scheme name and click the Save button to save the session configuration for later
use. The dialog also stores the last settings and displays them next time you create a serial terminal
session.

Generating Script

Device Monitoring Studio Documentation Advanced Features

104

Click the Generate script button to generate script that creates a new terminal session and sets its
parameters according to settings in the configuration window.

MODBUS Send
MODBUS Send window provides an easy way to control a MODBUS-compatible device. It can come of
great help when you need to debug your device, for example verify its responses. You can set all
parameters for any standard or user-defined MODBUS function visually and then just click on the Send
button. Result rollout will dynamically reflect the changes you make.

MODBUS Send window allows you to send both requests and responses.

It is convenient to use a MODBUS View visualizer in conjunction with a MODBUS Send window for two-
way debugging (to view both requests and responses).

Using MODBUS Send

MODBUS Send with Serial Devices

Below are the generic steps you need to perform to send a MODBUS request to the compatible device:

1. Create a terminal session and then switch to MODBUS Send window (use the View » Tool
Windows » MODBUS Send command if it’s not visible). Alternatively, click the New button in
MODBUS Send window and select “Serial Session” option.

2. Choose the correct terminal session from the list of terminal sessions in MODBUS Send window. If
there is only one active terminal session, it will be chosen automatically.

3. Choose the correct mode (ASCII or RTU) from the list of modes in MODBUS Send window. Please
refer to MODBUS documentation for more information.

4. Select the correct MODBUS device address (0 is used for broadcasting). Please refer to MODBUS
documentation for more information.

5. Select the function you need from the Function combo box. MODBUS Send window will update
itself according to the function selected. This may cause new rollouts to appear and some to
disappear.

6. Open the function parameter rollout. It can be the generic Parameters rollout, or function-specific
rollout. See the detailed function description below for information on particular function and its
configuration rollouts.

7. Enter all required data in the function configuration rollout.

8. You can close the rollout - all entered data will be saved. If you re-open the rollout, you will see all
entered data intact.

9. You can examine the resulting packet contents in the Result rollout.

10. Press the Send button to send data to the device.

MODBUS Send with TCP Session (MODBUS TCP Protocol)

Create a TCP session by pressing the New button and selecting “TCP Session” option from the list.
Configure the TCP session by filling the destination address and port fields. Optionally enable the
“Create monitoring session” option to automatically start a network monitoring session for this
endpoint:

Device Monitoring Studio Documentation Advanced Features

105

After the TCP session is created, continue with a normal work flow as described in the previous section.

MODBUS Session

MODBUS Send with Serial Devices

MODBUS Send window uses Terminal Session to connect to the serial device. A terminal session can be
created in Terminal tool window or by the running script. It will then appear immediately in the Session
list in the MODBUS Send window. When the terminal session is closed, it is automatically removed from
the list.

You cannot use MODBUS Send window if you have no serial devices installed on your computer.

The MODBUS Send window controls stay disabled until you configure and select a terminal session.

MODBUS Send over MODBUS TCP Protocol

MODBUS Send window uses TCP Session to connect to the device over IP network. A TCP session can be
created by pressing the New button on MODBUS Send window or by the running script. It will then
appear immediately in the Session list in the MODBUS Send window. When the TCP session is closed, it
is automatically removed from the list.

You cannot use MODBUS Send window if you have no configured TCP sessions.

The MODBUS Send window controls stay disabled until you configure and select a TCP session.

MODBUS Send Window Rollouts

Generic Rollouts

Result Rollout

Result rollout is intended to help you analyze the packet before you send it. The rollout is hidden by
default, but you can open it by clicking on its name. Result rollout includes read-only text control and
Total Length control. When you modify MODBUS function parameters, Result rollout automatically
reflects the changes. It is very helpful for MODBUS protocol exploration.

The values are displayed in Result rollout in hex format grouped as single bytes. For example, the 255
value is represented as FF.

Note that the Result rollout displays empty data if invalid or incomplete values are specified for one of
the function parameters.

As long as MODBUS packet is limited in size, the Result rollout displays maximum 252 bytes of data (as
defined in MODBUS protocol documentation). First special leading byte is not displayed in Result rollout,
so the maximum size of data in this case is 253.

Device Monitoring Studio Documentation Advanced Features

106

NOTE
The result is displayed in binary form (it is not converted to ASCII) without leading “:” character in
ASCII mode.

The context menu offers you the following functions:

Save to binary file
Binary file is a non-text file with a bin extension. The data is written in the binary format. For
example, the DD AA B5 (3 bytes) sequence displayed in result pane will result in bytes 0xDD , 0xAA
and 0xB5 written into the output file. The resulting file can subsequently be used by some other
application for additional processing.

Save to file
Saves the contents of the Result rollout to the ASCII-encoded text file. The file then can be opened
in any text editor or used by some other application.

Copy
Copies the contents of the Result rollout to the Clipboard in text format.

User Data Rollout

The User Data rollout appears when the USER-DEFINED FUNCTION is chosen from the Function list. It
allows you to enter the contents of the custom request. Type in hexadecimal numbers (characters 0-9, A-
F, either lowercase or uppercase).

The context menu offers you the following functions:

Save to binary file
Binary file is a non-text file with a bin extension. The data is written in the binary format. For
example, the DD AA B5 (3 bytes) sequence displayed in result pane will result in bytes 0xDD , 0xAA
and 0xB5 written into the output file. The resulting file can subsequently be used by some other
application for additional processing.

Save to file
Saves the contents of the Result rollout to the ASCII-encoded text file. The file then can be opened
in any text editor or used by some other application.

Load from file
Loads the data from either the text or binary file, which was previously saved with a Save to binary
or Save to file commands.

Clear
Empties the entered data.

Parameters Rollout

This rollout is used in the following functions:

Read Coil Status
Read Discrete Inputs
Read Holding Registers
Write Single Coil
Write Single Register
Diagnostics

Device Monitoring Studio Documentation Advanced Features

107

Read FIFO Queue
Write Single Coils (response)
Write Single Register (response)
Read Exception Status (response)
Diagnostics (response)
Get Comm Event Counter (response)
Write Multiple Coils (response)
Write Multiple Registers (response)
ERROR (response)

The rollout contains two edit boxes that allow you to enter two 16-bit integers (except ERROR response,
where only 8-bit values are allowed). Since the Read FIFO Queue function has a single parameter, the
second edit box is disabled when you select this function.

Parameter names varies according to the selected function. Please consult the MODBUS documentation
for a definition of function parameters and their acceptable ranges.

Request Rollouts

Write Multiple Coils Rollout

This rollout is used to configure Write Multiple Coils function parameters. It consists of Starting Address
field, Number of Coils field and a list of coils. Coil is a boolean value.

Usage

Below are the steps you need to perform to configure the Write Multiple Coils function parameters
properly.

1. Enter the starting address value in the Starting Address edit box. Starting Address is a value
between 0 and 65535.

2. Enter the number of coils into the Number Of Coils edit box. See the items in the list added or
removed.

3. Check the items (coils) you want to set into TRUE state. Un-check items to set them into the FALSE
state.

The context menu offers you the following functions:

Check All
Puts all added coils to the TRUE state.

Uncheck All
Puts all added coils to the FALSE state.

Invert All
Inverts the state of all coils.

Write Multiple Registers Rollout

This rollout is used to configure Write Multiple Registers function parameters. It consists of Starting
Address field, Number of Registers field and a list of registers. A register is a 16-bit value.

Below are the steps you need to perform to configure the Write Multiple Registers function parameters
properly.

1. Enter the starting address value in the Starting Address edit box. Starting Address is a number from

Device Monitoring Studio Documentation Advanced Features

108

0 to 65535.
2. Enter the number of registers in the Number of Registers edit box. It can be a number from 0 to

120. See the registers added to the list or removed from it. By default, all of them have a zero value.
3. To change the value of register, select it in the list, then enter the register value into the Register

Value edit box and click the Set button (or press the ENTER key).
4. Repeat the previous step for each register.

Note: you can use “fast register entering” method. It is used when the number of registers is too big.
Repeat these steps:

1. Select the first register in list.
2. Enter register value into the Register Value edit box.
3. Press the ENTER key. The highlighted register's value will be updated and the next register becomes

active. Repeat steps 2 and 3 for each remaining register.

The context menu offers you the following functions:

Save to file
Saves all entered register values to comma-separated file (.CSV).

Load from file
Loads register values from comma-separated file (.CSV).

Read File Record Rollout

This rollout is used to configure Read File Record function parameters. It consists of File Number, Record
Number, Register Length edit boxes and a list. Each file record you enter should have its own file number
value, record number value and register length value.

Usage

Below are the steps you need to perform to configure the Read File Record function parameters
properly.

1. Enter file number into the File Number edit box. Valid numbers are from 0 to 65535.
2. Enter record length into the Record Length edit box. Valid numbers are from 0 to 65535.
3. Enter register length into the Register Length edit box. Valid numbers are from 0 to 65535.
4. Click the Add button to add a file record to the list.
5. Repeat steps 1-4 as many times as you need.

Use the && button to remove currently selected file record from the list. Use the Remove All button to
remove all file records from the list.

The context menu offers you the following functions:

Remove
Removes the currently selected file record from the list.

Remove All
Remove all file records from the list.

Write File Record Rollout

This rollout is used to configure Write File Record function parameters. It consists of File Number, Record
Number, Register Length edit boxes and a list. Each file record you enter should have its own file number
value, record number value and register length value.

Device Monitoring Studio Documentation Advanced Features

109

Usage

Below are the steps you need to perform to configure the Write File Record function parameters
properly.

1. Enter file number into the File Number edit box. Valid numbers are from 0 to 65535.
2. Enter record length into the Record Length edit box. Valid numbers are from 0 to 65535.
3. Enter register length into the Register Length edit box. Valid numbers are from 0 to 65535.
4. Click the Add button to add a file record to the list.
5. Enter data in the Edit Data dialog. See User Data Rollout section for more information.
6. Repeat steps 1-5 as many times as you need.

Use the Remove button to remove currently selected file record from the list. Use the Remove All
button to remove all file records from the list.

The context menu offers you the following functions:

Remove
Removes the currently selected file record from the list.

Remove All
Remove all file records from the list.

Show Data
Brings up the Edit Data dialog in read-only mode.

Mask Write Register Rollout

This rollout is used to configure Mask Write Register function parameters. It consists of Reference
Address edit box, sixteen OR Mask check boxes and sixteen AND Mask check boxes.

Usage

Below are the steps you need to perform to configure the Mask Write Register function parameters
properly.

1. Enter reference address value into ‘Reference Address’ edit box. It can hold values from 0 to 65535.
2. Check the check boxes in OR Mask group. Each check box represents single bit in the mask. The

mask in the Result box is dynamically updated as you check or un-check bits.
3. Check the check boxes in AND Mask group. Each check box represents single bit in the mask. The

mask in the Result box is dynamically updated as you check or un-check bits.

Read/Write Multiple Registers Rollout

This rollout is used to configure Read/Write Multiple Registers function parameters. It consists of Read
Address, Read Quantity, Write Address, Write Quantity fields and a list. Register is a 16-bit value.

Usage

Below are the steps you need to perform to configure the Mask Write Register function parameters
properly.

1. Enter the starting read address in the Read Address edit box. Valid values are from 0 to 65535.
2. Enter the number of registers in the Read Quantity edit box. Valid values are from 0 to 118.
3. Enter the starting write address in the Write Address edit box. Valid values are from 0 to 65535.

Device Monitoring Studio Documentation Advanced Features

110

4. Enter the register number in the Write Quantity edit box. See the registers added to the list or
removed from it. By default, all of them have a zero value.

5. To change the register value, select it, then enter the value into the Register Value edit box and
press the Set button (or press the ENTER key).

6. Repeat the previous step until all registers are added.

Note: you can use “fast register entering” method. It is used when the number of registers is too big.
Repeat these steps:

1. Select the first register in list.
2. Enter register value into the Register Value edit box.
3. Press the ENTER key. The highlighted register's value will be updated and the next register becomes

active. Repeat steps 2 and 3 for each remaining register.

The context menu offers you the following functions:

Save to file
Saves all entered register values to comma-separated file (.CSV).

Load from file
Loads register values from comma-separated file (.CSV).

Response Rollouts

Get Comm Event Log Rollout (response)

This rollout is used to configure Get Comm Event Log function response parameters. It consists of Status
field, Message Count field, Event Count field and list of events.

Below are the steps you need to perform to configure the Get Comm Event Log function response
parameters properly.

1. Enter status value into Status field. Status is a number from 0 to 65535.
2. Enter message count value into Message Count field. It can be a number from 0 to 65535.
3. Enter event count value into Event Count field. It can be a number from 0 to 245.
4. Click on any other control to confirm the event count value. See the events added into list or

removed from it. By default, all of them have 0 value.
5. To change the value of event, do the following: select the event in a list, enter event value into Event

Value field, click the Set button (or press ENTER).
6. Repeat previous step several times until you've finished.

Note: you can use “fast register entering” method. It is used when there is a large number of registers.
Repeat these steps:

1. Select the first event in a list.
2. Enter event value into the Event Value field.
3. Press the ENTER key. The highlighted event value will be updated and the next register becomes

active. Repeat steps 2 and 3 for each remaining register.

The context menu offers you the following functions:

Save to file
Saves all entered event values to comma-separated file (.CSV).

Load from file
Loads event values from comma-separated file (.CSV).

Device Monitoring Studio Documentation Advanced Features

111

Read FIFO Queue Rollout (response)

This rollout is used to configure Read FIFO Queue function response parameters.

Below are the steps you need to perform to configure the Read FIFO Queue function response
parameters properly.

1. Enter the number of FIFO registers value in FIFO count field. It can be a number from 0 to 120. See
the registers added into the list or removed from it. By default, all of them have 0 value.

2. To change the value of register, do the following: select the register in the list, enter register value
into FIFO Value field, click the Set button (or press ENTER)

3. Repeat previous step several times until you've finished.

Note: you can use “fast register entering” method. It is used when there is a large number of registers.
Repeat these steps:

1. Select the first register in list.
2. Enter value into the FIFO Value field.
3. Press the ENTER key. The highlighted FIFO register value will be updated and the next item becomes

active. Repeat steps 2 and 3 for each remaining register.

The context menu offers you the following functions:

Save to file
Saves all entered register values to comma-separated file (.CSV).

Load from file
Loads register values from comma-separated file (.CSV).

Read File Record Rollout (response)

This rollout is used to configure Read File Record function response parameters. It consists only of a list.

Below are the steps you need to perform to configure the Read File Record function response
parameters properly.

1. Press the Add button. The data-entering dialog box will appear.
2. Enter the data and press OK button. Record will be added to the list.
3. Repeat steps 1-2 until you've finished.

Use the Remove button to remove currently selected file record from the list. Use the Remove All
button to remove all file records from the list.

The context menu offers you the following functions:

Remove
Click this command to remove the currently selected file record from the list.

Remove All
Click this command to remove all file records from the list.

Read/Write Multiple Registers Rollout (response)

This rollout is used to configure Read-Write Multiple Registers function response parameters.

Below are the steps you need to perform to configure the Read-Write Multiple Registers function
response parameters properly.

Device Monitoring Studio Documentation Advanced Features

112

1. Enter the number of registers value in Register Count field. It can be a number from 0 to 120. See
the registers added into the list or removed from it. By default, all of them have 0 value.

2. To change the value of register, do the following: select the register in the list, enter register value
into Register Value field, click the Set button (or press ENTER).

3. Repeat previous step until you've finished.

Note: you can use “fast register entering” method. It is used when there is a large number of registers.
Repeat these steps:

1. Select the first register in list.
2. Enter register value into the Register Value edit box.
3. Press the ENTER key. The highlighted register's value will be updated and the next register becomes

active. Repeat steps 2 and 3 for each remaining register.

The context menu offers you the following functions:

Save to file
Saves all entered register values to comma-separated file (.CSV).

Load from file
Loads register values from comma-separated file (.CSV).

Report Slave ID Rollout (response)

This rollout is used to configure Report Slave ID function response parameters. It consists of Run
Indicator Status field, Slave ID field, Additional Data field. The Slave ID and Additional Data are variable
length fields (device specific). Below are the steps you need to perform to configure the Get Comm Event
Log function response parameters properly.

1. Enter run indicator status value into Run Indicator Status field. It can be a number from 0 to 255.
Enter 0 (0x00) for FALSE and 255 (0xFF) for TRUE.

2. Enter slave ID data (variable length data) into the Slave ID field. You can enter maximum 16 bytes in
this field.

3. Enter additional data (variable length data) into the Additional Data edit box. You can enter
maximum 230 bytes in this field.

Protocols
Device Monitoring Studio supports automatic parsing of monitored USB, Serial and Network data
according to custom protocol. The protocol definition language is a C-like programming language with
full support of dynamic-size data structures. It supports conditional and loop statements, has a rich set
of built-in functions, allows user-defined functions and supports extension via external JavaScript code.

Protocol Binding Workflow

Device Monitoring Studio automatically binds monitored Serial, USB and Network packets if a Capture
Filter is enabled for a session or at least one protocol-based data processing module is added to it.
Examples of protocol-based modules include: Structure View, Custom View, Request View, Text Exporter
and others.

After the packet binding is complete, the filter is applied (if enabled). At this stage, a packet may be
discarded. Note that this occurs before any other component receives a bound packet. After that, field
values become available for all data processing modules.

Structure View is a data visualizer that displays all bound fields as they are. Thus it automatically works
with any built-in or custom protocol. Text Exporter is an “exporting” version of Structure View: it

Device Monitoring Studio Documentation Advanced Features

113

directs all parsed data into the text file instead of a window on a screen.

Custom View data visualizer may be used to get bound packet field values, format them and display in a
visualizer window. Serial Monitor's Request View and Console View data visualizers as well as Network
Monitor's HTTP View are controlled by Custom View.

Pre-installed Protocols

Network Monitoring Protocols

Network Monitor comes with many pre-installed protocols. All supported protocols, along with a short
description and file name where they are defined, are listed in the table below:

Protocol Description Protocol Definition
File

Arp Address Resolution Protocol arp.h

Bvlc BACnet Virtual Link Control Protocol bvlc.h

Bacnet BACnet Protocol bvlc.h

BacnetMSTP BACnet MSTP (Master Slave Token Passing)
Protocol

bvlc.h

Ccp CAN Calibration Protocol Protocol ccp.h

Chap Challenge Handshake Authentication
Protocol

chap.h

Dhcp Dynamic Host Configuration Protocol (over
Ipv4)

dhcp.h

Dhcpv6 Dynamic Host Configuration Protocol (over
Ipv6)

dhcpv6.h

Dns Domain Name System Protocol dns.h

Ethernet Ethernet Protocol net_defs.h

Gre Generic Routing Encapsulation Protocol gre.h

HTTP Hyper-text Transfer Protocol http.h

llMnr Link Local Multicast Name Resolution dns.h

Icmp Internet Control Message Protocol (over Ipv6) icmp.h

Icmpv6 Internet Control Message Protocol (over Ipv6) icmpv6.h

LLDP Link Layer Discovery Protocol lldp.h

Ipcp Internet Protocol Control Protocol (over Ipv4) ipcp.h

Ipcp6 Internet Protocol Control Protocol (over Ipv6) ipcp.h

Lcp Link Control Protocol lcp.h

Llc Logical Link Control Protocol llc.h

Llmnr Link-Local Multicast Name Resolution
Protocol

dns.h

Lqr Link Quality Report Protocol ppp.h

Ipv4 Internet Protocol version 4 ip.h

Ipv6 Internet Protocol version 6 ipv6.h

Msrpc Microsoft Remote Procedure Call Protocol msrpc.h

ModbusTCP Modbus over TCP Protocol modbus.h

Netbios Network Basic Input/Output System Protocol netbiosbase.h

Device Monitoring Studio Documentation Advanced Features

114

NbtNs NetBios Name Service NbtNs.h

NbtNsOverTcp NetBios Name Service protocol (over Tcp) NbtNs.h

NbtSS NetBios Session Service NetBios.h

NbtDs NetBios Datagram Service NetBios.h

PPP Point-to-Point Protocol ppp.h

PPPoE Point-to-Point Protocol over Ethernet pppoe.h

SNAP Standard Network Access Protocol snap.h

Smb Server Message Blocks smb.h

Smb2 Server Message Blocks version 2 smb.h

SmbOverTcp Server Message Blocks (over Tcp) smb.h

Tcp Transmission Control Protocol tcp.h

Udp User Datagram Protocol udp.h

Protocol Description Protocol Definition
File

USB Monitoring Protocols

USB Monitor contains the following pre-defined protocols:

Video Class | USB Video Class | usb_video.h Audio Class | USB Audio Class | usb_audio.h
Communication Class | USB Communication Class | usb_comm.h

In addition, it contains protocols for correctly decoding descriptor requests, including device,
configuration and endpoint descriptors as well as full HID descriptor parsing.

Serial Monitoring Protocols

Serial Monitor contains the following pre-defined protocols:

MODBUS | Full definition of MODBUS RTU and MODBUS ASCII protocols | modbus.h PPP | Point-to-Point
Protocol | ppp.h

In addition, serial module uses protocols, defined in Network module through the PPP protocol.

Custom Protocols

In addition to built-in protocols, Device Monitoring Studio allows you to define custom protocols and
use them for binding monitored data. After the custom protocol is defined and plugged into the
protocol chain, it becomes available for all components, like Capture Filter, Display Filter, Structure View
and others.

Device Monitoring Studio includes a built-in protocol editor, which simplifies developing and usage of
custom protocols.

Basically, you follow this procedure to add a custom protocol(s) to Device Monitoring Studio:

1. Create a protocol definition file with one or more protocols defined. Use either built-in protocol
editor or any external editor.

2. Edit the corresponding built-in protocol definition file to “plug” your new protocol(s) in the desired
position in protocol chain.

See the Adding new Protocol Tutorial for more information.

Device Monitoring Studio Documentation Advanced Features

115

Device Monitoring Studio will automatically recompile the whole protocol stack whenever you save your
changes. This behavior may be switched off with a Tools » Protocol Editor » Auto-recompile
command. You will be forced to stop any currently running monitoring sessions on every recompilation.

If there are any compilation errors, they will be displayed in Compile Errors tool window. Double-click
on the error to open corresponding source file. Error position is automatically highlighted in a file.

Predefined Fields

Several predefined fields and functions are available for a custom protocol. This topic lists all those
predefined components.

Common Predefined Identifiers

This section lists predefined fields available in all components: USB, Serial and Network:

packet_ordinal

A packet number (integer value). The very first packet has number 0. All subsequent packets have
increasing numbers.

entry_time

Packet time stamp. This is the same format as in FILETIME structure (that is, it is a 64-bit unsigned
integer representing the number of 100-nanosecond intervals since January 1, 1601). The time is
UTC time.

packet_size

The size of the packet, including packet header.
current_offset

This pseudo field represents the offset from the beginning of the packet to the currently binding
field. See current_offset for more information.

device_source

For multi-source session, this field contains the device ordinal (counting from zero). For other
session types, this field is always zero.

Serial Monitor and Serial Bridge

Serial Monitor and Serial Bridge add the following predefined fields:

packet_type

A value from PacketType enumeration (std_serialdefs.h). May be one of the following values:

Device Monitoring Studio Documentation Advanced Features

116

Constant Description
PACKET_CONDISCONNECT Port connection/disconnection packet.
PACKET_GENERAL General packet. Contains either sent (written) or

received (read) data.
PACKET_CREATE Port open packet.
PACKET_IO I/O Request packet.

is_packet_up

Boolean value which equals true if this packet is captured on its way UP or equals false if it is
captured on its way DOWN.

sending_device

Used in Serial Bridge monitoring sessions. Equals to zero for first device and equals to one for the
second device.

status

Holds the status of the I/O request. Zero means success, non-zero code is a NTSTATUS code, as
defined in WDK.

The following global functions are available:

get_communications_mode()

Returns the current monitoring session's communication mode. See ECommunicationType
enumeration defined in std_serialdefs.h . May be one of the following values:

Constant Description
GENERAL_COMMUNICATION No special communication mode is set.
PPP_COMMUNICATION PPP communication mode is configured for a session.
X0D_COMMUNICATION “One packet a line” communication mode is

configured for a session.
MODBUS_COMMUNICATION MODBUS communication mode is configured for a

session.
modbus_is_request_read()

Returns true if “Parse requests on WRITE (responses on READ)” global setting is checked, false
otherwise.

modbus_get_use_rtu()

Returns true if RTU mode is configured for MODBUS in settings, false otherwise.

USB Monitor

USB Monitor adds the following predefined fields and functions:

event_type

USB packet type. May be one of the following values:

Device Monitoring Studio Documentation Advanced Features

117

Constant Description
EVENT_URB USB Request Block. Custom protocol should

mainly focus on this packet type.
EVENT_DEVICECONNECTED Device connection packet.
EVENT_DEVICEDISCONNECTED Device disconnection packet.
EVENT_DEVICESURPRISEREMOVAL Device surprise removal packet.
EVENT_DEVICEQUERYID Device Query ID packet.
EVENT_DEVICEQUERYTEXT Device Query Text packet.
EVENT_PIPEINFO Internal packet used to report updated

configuration descriptor to the USB Monitor.
Should be ignored by custom protocol.

EVENT_QUERYINTERFACE Device Query Interface packet.
is_packet_up

Boolean value which equals true if this packet is captured on its way UP or false if it is captured on
its way DOWN.

usb_get_vendor_name(vendorId)

Resolves the USB vendor id to the vendor name. Returns a string.
usb_get_model_name(vendorId, modelId)

Resolves the USB model id to the device name. Returns a string.

Network Monitor

Network Monitor adds the following predefined fields:

fragment_no

Packet number for a fragment packet. If the current packet is not a fragment, this field equals to
LONG_MAX .

process_id

ID of the process initiating the request.
is_send_packet

true for Send packets and false for Receive packets.

Protocol Reference

Serial Monitoring Sessions

Serial monitoring session uses the type Serial , declared in serial.h file to bind a serial packet. Please
consult the file for detailed step-by-step description of binding process.

Serial Bridge Monitoring Sessions

Serial Bridge monitoring session uses the type BridgePacket , declared in serial.h file to bind a serial
bridge packet. Please consult the file for detailed step-by-step description of binding process.

USB Monitoring Sessions

USB monitoring session uses the type Usb , declared in usb.h file to bind a USB packet. Please consult
the file for detailed step-by-step description of binding process.

Device Monitoring Studio Documentation Advanced Features

118

Network Monitoring Sessions

Network monitoring session uses the type Ethernet , declared in network.h file to bind a network
packet. Please consult the file for detailed step-by-step description of binding process.

Protocol Editor

Built-in protocol editor allows you to view and edit predefined and custom protocol definition files. To
open a file, use one of the following:

Protocols List Tool Window
Double-click on any file or protocol in a list to automatically open it in the editor.

Generic File » Open… command
Use this generic open command to open a protocol definition file.

Tools » Protocol Editor » Open Protocol File… command
Use this command to open a protocol definition file.

Tools » Protocol Editor » New Protocol File…
Use this command to create a new protocol definition file and open it in the editor. You will be
asked for a location and name.

Editor uses syntax coloring (which you may customize as described in the Protocol Editor Coloring
section) and provides advanced editing capabilities.

Find

Use the Edit » Find… command to bring up the Find window. Enter the pattern to search, configure
options and press the Find button. Then use the Edit » Find Next command to jump to the next pattern
occurrence.

Replace

Device Monitoring Studio Documentation Advanced Features

119

Use the Edit » Replace… command to bring up the Replace window. Enter the source and replacement
patterns, configure options and then press the Replace or Replace All button.

Go to Line

Use the Edit » Go to Line command to bring up the Go to Line window. Enter the line number and
press OK button.

Protocols List Tool Window

Protocols List tool window displays all loaded protocol files as well as list of protocols defined in them.
At the root level, all installed modules are displayed, such as Serial, USB and Network. For each, files and
protocols are displayed in corresponding groups. Double-click on the file to open this file in the editor.
Double-click on the protocol to open its corresponding file and automatically navigate to protocol
definition.

Unknown Files

Device Monitoring Studio automatically scans the protocol folder
(%PROGRAMDATA%\HHD Software\Device Monitoring Studio x.xx) for protocol definition files. If it finds files
not referenced by any protocol chain, it will include them into Unknown group. As soon as you plug
your protocol definition to some of protocol chains, it will be moved into corresponding group.

You may delete any file in the Unknown group by using the Tools » Protocol Editor » Delete File
command.

Coloring

Device Monitoring Studio Documentation Advanced Features

120

Device Monitoring Studio Documentation Advanced Features

121

This window allows you to configure fonts and colors used by protocol editor. You can change the
appearence of the following categories:

Comments
Comments are standard C/C++ comments sections, enclosed between /* and */ or one-line
commentaries started with //

Functions
Functions declared in protocol definition files

Identifiers
Identifiers, such as field names, variable names, protocol and structure names.

Keywords
Protocol definition language keywords, such as statements and types.

Numbers
All numeric values.

Operators
All supported operators.

Plain text
Other un-categorized text.

Pragmas
Pragma declarations.

Device Monitoring Studio Documentation Advanced Features

122

Preprocessor
Preprocessor directives.

Strings
String literals.

Licenses

This product includes the open source project Scintilla. Scintilla project license is provided below and is
also available at http://www.scintilla.org/License.txt

License for Scintilla and SciTE

Copyright 1998-2002 by Neil Hodgson <neilh@scintilla.org>

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

Tutorials

Adding New Protocol

This section will guide you through creation of your own protocol and adding it to the network protocol
chain. You may use the same steps to create and add protocols to other protocol chains.

Creating New Protocol Definition File

First, we will create an empty protocol definition file. Execute the Tools » Protocol Editor » New
Protocol File command. You will be presented with a standard Windows Save File dialog. Do not change
the location and enter the following name: mygame.h . An empty editor file will be opened.

Copy and paste the following text into the protocol definition file:

C++
//Custom protocol
//Network Game Sample

// Include standard headers
#include "std_netdefs.h"

#pragma pack(1)

enum MessageType : DWORD
{
 MSGID_CONNECT_PLAYER = 1,
 MSGID_DISCONNECT_PLAYER,
 MSGID_CREATE_PLAYER,
 MSGID_SEND_PLAYER,
 MSGID_SEND_PLAYER_POS,
 MSGID_SEND_PLAYER_CHARS,
 MSGID_LAST
};

Device Monitoring Studio Documentation Advanced Features

123

};

struct pstring_a
{
 BYTE length;
 char text[length];
};

struct MyCreatePlayer
{
 pstring_a PlayerName;
};

struct MySendPlayerAdded
{
 DWORD PlayerID;
};

struct MyConnect
{
 DWORD PlayerID;
};

struct MyDisConnect
{
 DWORD PlayerID;
};

struct MySendPlayerPos
{
 float x;
 float y;
 float z;
};

struct MySendPlayerCharacteristics
{
 WORD Strength;
 WORD Dexterity;
 WORD Health;
 WORD Mana;
};

[category(protocol)]
public struct MyGameProtocol
{
 MessageType MsgID;
 WORD Version;
 switch(MsgID)
 {
 case MSGID_CONNECT_PLAYER:
 MyConnect connect;
 break;
 case MSGID_DISCONNECT_PLAYER:
 MyDisConnect disconnect;
 break;
 case MSGID_CREATE_PLAYER:
 MyCreatePlayer create;
 break;
 case MSGID_SEND_PLAYER:
 MySendPlayerAdded send_added;
 break;

 default:
 if(MsgID > MSGID_SEND_PLAYER && MsgID < MSGID_LAST)
 {
 struct GameData
 {
 DWORD PlayerID;
 switch(MsgID)
 {
 case MSGID_SEND_PLAYER_POS:
 MySendPlayerPos player_pos;
 break;
 case MSGID_SEND_PLAYER_CHARS:
 MySendPlayerCharacteristics player_chars;

Device Monitoring Studio Documentation Advanced Features

124

 MySendPlayerCharacteristics player_chars;
 break;
 }
 } game_data;
 }
 else
 {
 BYTE Unknown[packet_size - current_offset];
 }
 }
};

Save the file using the File » Save command.

Plugging New Protocol to Protocol Chain

Next step is to plug our new protocol into the protocol chain. We need to tell Device Monitoring Studio
where and under what conditions this new protocol should be bound to monitored data.

Our game uses UDP for transport and has a specific UDP port. We will use this information to plug our
game protocol. First, use the Protocols List tool window to open the UDP protocol. Expand the
“Network” category, then “Protocols” category and double-click on the “Udp” item.

As you see, part of the Udp protocol definition includes a switch that selects next enclosed protocol.
Modify the switch by adding the following text just before the default: line:

C++
case MyPort:
 MyGameProtocol my_proto;
 break;

Then, scroll to the beginning of the udp.h file and add the following text (after all #include directives):

C++
// Include the contents of the protocol definition file
#include "mygame.h"

// Define the port our game is using
const MyPort = 32323;

As soon as you save the udp.h file (using the File » Save command), Device Monitoring Studio will
automatically compile the changes. If there are any compilation errors, they will be displayed in the
Compile Errors tool window. Otherwise, next network monitoring session you start will automatically use
your new protocol whenever UDP packet to port 32323 is captured.

Language Reference

Device Monitoring Studio supports advanced structure definition syntax. It is based on the Standard C
type definition syntax and extends it in a number of ways.

While Standard C only allows defining static types, that is, data structures which size and memory
allocation is strictly defined at compile time, Device Monitoring Studio extends the syntax to allow
definition of dynamic types. The following code illustrates this:

Device Monitoring Studio Documentation Advanced Features

125

C++
struct StaticType
{
 int Array[128];
};

struct DynamicType
{
 int ArraySize;

 // invalid in Standard C (non const expression), valid in Device Monitoring Studio
 int Array[ArraySize / sizeof(int)];
};

The DynamicType structure definition is valid in Device Monitoring Studio. The size of the structure is
determined at the time it is bound to the data and the number of elements in Array array varies.

Workflow

Device Monitoring Studio compiles all protocol definition files in its library on each application start. A
preprocessor is run on each source file. It is responsible for the following tasks:

Elimination of all comments from the source file.
Macro evaluation.
Processing of conditional compilation blocks.
Processing of all #include directives and building the dependency graph.

Multiple files are pre-processed and compiled in parallel if Device Monitoring Studio is running on multi-
processor and/or multi-core computer.

Tokenization

Source files are tokenized according to standard C language rules: there must be one or more space
characters between tokens if they cannot be distinguished without spaces and there may optionally be
one or more spaces between tokens if they are distinguishable without spaces.

Space is a space character (' '), tabulation ('\t'), newline ('\n') or comment.

C++
int a; // valid, space is used to separate tokens "int" and "a"
int/* comment */a; // valid, comment is used to separate tokens "int" and "a"
inta; // invalid, compiler cannot distinguish between "int" and "a" and parses it
as "inta"
int // continued on the next line…
 a // still continued…
 ; // valid, newline is valid space character

a & b // valid, space is used to separate "a" and "&" and "&" and "b"
a&b // still valid, space is not required - compiler is able to
 // distinguish between "a" (identifier) and "&" (operator)

Space must not be used inside a keyword, such as built-in type int or operator && :

C++
in t a; // invalid, "int" must not contain space
a & & b // valid, but will be parsed as a & (&b)
a | | b // invalid, space inside keyword (operator "||")

Comments

Two standard C-style comments are supported: single-line and multi-line comments. Single-line
comment starts with // character sequence and continues to the end of the current line. Multi-line

Device Monitoring Studio Documentation Advanced Features

126

comments must be started with /* sequence and terminated with */ sequence.

C++
// Single-line comment
/* multi-line
 (continued here)
 comment */

Multi-line comments may be used “in-place”:

C++
struct /* comment */ A
{
 int /* another comment */ a;
};

Comments are completely ignored and removed from the document prior to compiling it.

Preprocessor

Preprocessor is a special compiler that is run each time the application compiles the protocol definition
file. It executes before compilation of the source file and prepares a source file for compilation.

Device Monitoring Studio provides a fully C99-compliant preprocessor which supports the following
directives:

#include

Performs a physical inclusion of the contents of another source file into the current file.
#pragma once

Prevents a file from being included multiple times.
#define , #undef

Allows defining preprocessing constants and macros.
#if , #ifdef , #ifndef , #else , #elif , #endif , defined() operator .

Provides support for conditional compilation.
#error

Unconditionally stops source file compilation.

#include directive

#include directive physically includes the contents of a specified file into the current file.

Syntax:

C++
#include "filename"

or

C++
#include <filename>

When used in its first form, the referenced file is searched in the same folder as the current file.

For example, let us have following two files:

Device Monitoring Studio Documentation Advanced Features

127

file1.h

C++
struct A
{
 // …
};

And file2.h :

C++
#include "file1.h"

struct B
{
 A a;
};

If there was no #include directive in file2.h , you would not be able to add this file to a Structure
Library, as it uses an undefined type A . But preprocessor, which runs on the file before it is compiled,
transforms the file into the following:

C++
struct A
{
 // …
};

struct B
{
 A a;
};

That is, it physically inserts the contents of file1.h into file2.h , thus, making file2.h compilable. See
also the #pragma once directive.

Using Absolute and Relative Paths

Both syntax forms, form 1 and form 2 allow you to specify absolute or relative paths, for example:

C++
// will use an absolute path
#include "c:\Projects\definitions.h"

// includes "definitions.h" file, located in "inc" sibling
#include "..\inc\definitions.h"

// includes "definitions.h" file, located in "lib" subdirectory
// of one of standard include paths.
#include <lib\definitions.h>

#pragma once Directive

#pragma once directive prevents the file from being included multiple times.

Syntax:

C++
#pragma once

L et fileA.h be #include -ed into fileB.h and into fileC.h . If you now write a fileD.h with the
following two lines:

Device Monitoring Studio Documentation Advanced Features

128

C++
#include "FileB.h"
#include "FileC.h"

“fileA.h” will get included twice. In order to prevent this, put a following line into the “fileA.h” file:

C++
#pragma once

#define Directive

#define directive lets you define preprocessor-time constants and macros.

Syntax:

C++
#define id [token-string]

or

C++
#define id([id, [id, […]]) [token-string]

A macro declaration must end on the same line. If you need to continue on the next line, finish a line
with a backslash character:

C++
#define MY_STRING "This is a start of the long " \
 "long long " \
 "string" // the end of macro declaration

Defining Constants

In its first form, #define creates a preprocessor-time constants. For example:

C++
#define MAX_LENGTH 5

This declaration will instruct the preprocessor to scan the source file and replace all occurrences of
MAX_LENGTH with 5 . The preprocessor is smart enough to only perform a replace when MAX_LENGTH is
used as an identifier, that is, it will transform the following code fragment:

C++
// This example uses MAX_LENGTH:
struct A
{
 int array[MAX_LENGTH];
 const int MaxLength = MAX_LENGTH;
 $assert(MaxLength == MAX_LENGTH, "Error with MAX_LENGTH");
};

into the following:

Device Monitoring Studio Documentation Advanced Features

129

C++
// This example uses MAX_LENGTH:
struct A
{
 int array[5];
 const int MaxLength = 5;
 $assert(MaxLength == 5, "Error with MAX_LENGTH");
};

As you see, substitution had not occurred in comment and in string. All other occurrences have been
replaced.

A constant may be more complex, for example:

C++
#define MAX_LENGTH (2 + 5)

Note the use of parenthesis in order to prevent operator precedence errors.

Defined constants may refer to constants defined before:

C++
#define SECOND 10000000
#define MINUTE (60 * SECOND)

The following form:

C++
#define SOME

will only define a constant, without assigning it a particular value. If occurred in a text, it gets removed
from it. However, you may successfully test such constant within the #ifdef directive or using a
defined() operator:

C++
#define INCLUDE_STRUCT_A
// …
#ifdef INCLUDE_STRUCT_A
struct A
{
 // …
};
#endif

By convention, macros and preprocessor constants are named with uppercase letters.

Defining Macros

The second form of the directive is used to define macros:

C++
#define ADD(x,y) ((x) + (y))

The preprocessor will not only perform a replace, but also will perform a parameter substitution:

C++
ADD(7,8) // will be replaced with ((7) + (8))
ADD(n,-1) // will be replaced with ((n) + (-1))

Macros may contain any number of parameters:

Device Monitoring Studio Documentation Advanced Features

130

C++
#define MAX(a,b) ((a) > (b) ? (a) : (b))

Variadic Macros

Device Monitoring Studio supports variadic macros. To use variadic macros, the ellipsis may be specified
as the final formal argument in a macro definition, and the replacement identifier __VA_ARGS__ may be
used in the definition to insert the extra arguments. __VA_ARGS__ is replaced by all of the arguments that
match the ellipsis, including commas between them.

#undef Directive

An #undef directive is used to remove the macro definition.

Syntax:

C++
#undef id

Example:

C++
#define MAX_LENGTH 5
struct A
{
 int array[MAX_LENGTH];
};

#undef MAX_LENGTH
struct B
{
 // compile-time error, "MAX_LENGTH" identifier not found
 // (preprocessor did not replace it with "5")
 int array[MAX_LENGTH];
};

#error Directive

#error directive stops compilation of the current source file.

Syntax:

C++
#error error-message-string

error-message-string is displayed to the user.

Preprocessor Operators

Stringizing Operator

The number-sign or “stringizing” operator # converts macro parameters to string literals without
expanding the parameter definition. It is used only with macros that take arguments. If it precedes a
formal parameter in the macro definition, the actual argument passed by the macro invocation is
enclosed in quotation marks and treated as a string literal. The string literal then replaces each
occurrence of a combination of the stringizing operator and formal parameter within the macro
definition.

Device Monitoring Studio Documentation Advanced Features

131

White space preceding the first token of the actual argument and following the last token of the actual
argument is ignored. Any white space between the tokens in the actual argument is reduced to a single
white space in the resulting string literal. Thus, if a comment occurs between two tokens in the actual
argument, it is reduced to a single white space. The resulting string literal is automatically concatenated
with any adjacent string literals from which it is separated only by white space.

Further, if a character contained in the argument usually requires an escape sequence when used in a
string literal (for example, the quotation mark (") or backslash () character), the necessary escape
backslash is automatically inserted before the character.

C++
#define ASSERT(condition, message) $assert(condition, message ": " #condition)

// …
struct A
{
 int a;
 ASSERT(a > 5, "a must be greater than 5");
// The previous line will be replaced with $assert(a > 5, "a must be greater than 5" ": " "a >
5");
};

Token-Pasting Operator

The double-number-sign or “token-pasting” operator ## , which is sometimes called the “merging”
operator, is used in both object-like and function-like macros. It permits separate tokens to be joined
into a single token and therefore cannot be the first or last token in the macro definition.

If a formal parameter in a macro definition is preceded or followed by the token-pasting operator, the
formal parameter is immediately replaced by the un-expanded actual argument. Macro expansion is not
performed on the argument prior to replacement.

Then, each occurrence of the token-pasting operator in token-string is removed, and the tokens
preceding and following it are concatenated. The resulting token must be a valid token. If it is, the token
is scanned for possible replacement if it represents a macro name. The identifier represents the name by
which the concatenated tokens will be known in the program before replacement. Each token represents
a token defined elsewhere, either within the program or on the compiler command line. White space
preceding or following the operator is optional.

This example illustrates use of token-pasting operator:

C++
#define BIT_FIELD(type, n) type field##n:n
// …
struct A
{
 BIT_FIELD(unsigned,5); // will be replaced with: unsigned field5:5;
 BIT_FIELD(unsigned,7); // will be replaced with: unsigned field7:7;
};

Conditional Compilation Directives

#if , #elif , #else , #endif , defined() operator

The #if directive, with the #elif , #else , and #endif directives, controls compilation of portions of a
source file. If the expression you write (after the #if) has a nonzero value, the line group immediately
following the #if directive is retained in the translation unit.

Device Monitoring Studio Documentation Advanced Features

132

C++
#if expression
text
[
#elif expression
text
[
#elif expression
text
]]
[
#else
text
]
#endif

Each #if directive in a source file must be matched by a closing #endif directive. Any number of #elif
directives can appear between the #if and #endif directives, but at most one #else directive is allowed.
The #else directive, if present, must be the last directive before #endif .

The #if , #elif , #else , and #endif directives can nest in the text portions of other #if directives. Each
nested #else , #elif , or #endif directive belongs to the closest preceding #if directive.

All conditional-compilation directives, such as #if and #ifdef , must be matched with closing #endif
directives prior to the end of file; otherwise, an error message is generated. When conditional-
compilation directives are contained in include files, they must satisfy the same conditions: There must
be no unmatched conditional-compilation directives at the end of the include file.

Macro replacement is performed within the part of the command line that follows an #elif command,
so a macro call can be used in the expression.

The preprocessor selects one of the given occurrences of text for further processing. A block specified in
text can be any sequence of text. It can occupy more than one line. Usually text is program text that has
meaning to the compiler or the preprocessor.

The preprocessor processes the selected text and passes it to the compiler. If text contains preprocessor
directives, the preprocessor carries out those directives. Only text blocks selected by the preprocessor
are compiled.

The preprocessor selects a single text item by evaluating the constant expression following each #if or
#elif directive until it finds a true (nonzero) constant expression. It selects all text (including other
preprocessor directives beginning with #) up to its associated #elif , #else , or #endif .

If all occurrences of constant-expression are false, or if no #elif directives appear, the preprocessor
selects the text block after the #else clause. If the #else clause is omitted and all instances of constant-
expression in the #if block are false, no text block is selected.

The constant-expression is an integer constant expression with these additional restrictions:

Expressions must have integral type and can include only integer constants, character constants,
and the defined() operator.
The expression cannot use sizeof() operator.

The preprocessor operator defined can be used in special constant expressions, as shown by the
following syntax:

C++
defined(identifier)
defined identifier

This constant expression is considered true (nonzero) if the identifier is currently defined; otherwise, the
condition is false (0). An identifier defined as empty text is considered defined. The defined directive can

Device Monitoring Studio Documentation Advanced Features

133

be used in an #if and an #elif directive, but nowhere else.

C++
// Define the structure definition variant:
#define VARIANT 2

// …

struct A
{
#if VARIANT == 1
 char a;
#elif VARIANT == 2
 short a;
#elif VARIANT == 3
 int a;
#else
 long a;
#endif
};

#ifdef , #ifndef

The #ifdef and #ifndef directives perform the same task as the #if directive when it is used with
defined(identifier) .

C++
#ifdef identifier
#ifndef identifier

// equivalent to
#if defined(identifier)
#if !defined(identifier)

You can use the #ifdef and #ifndef directives anywhere #if can be used. The #ifdef identifier
statement is equivalent to #if 1 when identifier has been defined, and it is equivalent to #if 0 when
identifier has not been defined or has been undefined with the #undef directive. These directives check
only for the presence or absence of identifiers defined with #define .

Predefined Macros

Device Monitoring Studio defines several macros, called predefined macros. These macros are available
for each structure definition file:

Device Monitoring Studio Documentation Advanced Features

134

Macro Description
_SVC_VER An integer that specifies the current compiler's version.

Low 8 bits represent the minor version, high 8 bits
represent major version. For example, version 3.05 is
represented as 0x305.

_SVC_X86 Defined for 32-bit version of Device Monitoring Studio.
Undefined for 64-bit version.

_SVC_X64 Defined for 64-bit version of Device Monitoring Studio.
Undefined for 32-bit version.

_SVC_POINTER_SIZE An integer that specifies the size of pointer in bits on
current machine. Equals to 32 for 32-bit version of Device
Monitoring Studio and 64 for 64-bit version.

_SVC_POINTER_SIZE_REAL An integer that specifies the size of pointer in bits on
current machine. Always returns the real value, even if 32-
bit version of Device Monitoring Studio is running on 64-
bit OS.

Built-in Types

Integer Types

Device Monitoring Studio natively supports the following integer types:

Device Monitoring Studio Documentation Advanced Features

135

Type Name Other Valid
Names

Typedefs
in
stddefs.h

Description Range

bool N/A N/A One-byte boolean
value. Displayed as
“true” and “false”.

N/A

char signed char CHAR, int8,
__int8

8-bit signed character -27 to
27 - 1

wchar_t N/A WCHAR 16-bit UNICODE
character

0 to
216 - 1

unsigned char N/A UCHAR ,
BYTE ,
uint8

8-bit unsigned
character

0 to
28 - 1

short signed short ,
short int ,
signed short int

SHORT ,
int16 ,
__int16

16-bit signed integer -215
to 215
- 1

unsigned short unsigned short int USHORT ,
WORD ,
uint16

16-bit unsigned
integer

0 to
216 - 1

int signed int , signed INT , int32 ,
__int32

32-bit signed integer -231
to 231
- 1

unsigned int unsigned UINT ,
uint32

32-bit unsigned
integer

0 to
232 - 1

long signed long ,
long int ,
signed long int

LONG 32-bit signed integer -231
to 231
- 1

unsigned long unsigned long int ULONG ,
DWORD

32-bit unsigned
integer

0 to
232 - 1

__int64 N/A LONGLONG ,
int64

64-bit signed integer -263
to 263
- 1

unsigned __int64 N/A ULONGLONG ,
FILETIME ,
uint64

64-bit unsigned
integer

0 to
264 - 1

Type Modifiers

Two modifiers, little_endian and big_endian may be used to change the default byte ordering of a
type. They may be used directly in declaring fields:

C++
struct A
{
 big_endian short value;
};

or in typedef declaration to create a new type:

C++
typedef big_endian short b_short;

Device Monitoring Studio Documentation Advanced Features

136

Note that #pragma byte_order directive may still be used to change default byte ordering for the rest of
a scope. If little_endian or big_endian modifier is present, it always overwrites the current default.

Floating-Point Types

Device Monitoring Studio natively supports the following floating-point types:

Type
Name

Description Size, in
Bytes

Range

float Single-precision floating-point type, according
to IEEE 754-1985

4 3.4∙10±38 (7
digits)

double Double-precision floating-point type,
according to IEEE 754-1985

8 1.7∙10±308 (15
digits)

String Types

Device Monitoring Studio natively supports the following string types:

Type Name Description
string Null-terminated ANSI string (each character occupies single byte).
wstring Null-terminated UNICODE string (each character occupies two bytes).

Expressions

Expressions are allowed in different places in the structure definition. For example, the size of the bit
field, the number of items in array and pointer offset are all specified using expressions. Expressions are
also used in calculating constant values and enumeration values.

Expression is a combination of immediate values, constants, enumeration values, function calls and field
references. All these elements are connected with one or more operators.

An expression may be as simple as:

C++
5 // evaluates to integer "5"

or as complex as:

C++
5 + 7*(10 - 2) // calculate an expression
info.bmiHeader.sel.header.biSizeImage // take a value of a field several scopes deep
bfTypeAndSignature.bfType == 'BM' && bfReserved1 == 0 && bfReserved2 == 0 // verify a
condition
RvaToVa(OptionalHeader.DataDirectory[i].VirtualAddress) // access a field in a nested structure
and array and call an external function

Operators

Below is a table of supported operators. Operators are sorted by their precedence, from highest to
lowest. Operators in the same row have the same precedence value and are evaluated from left to right.

Device Monitoring Studio Documentation Advanced Features

137

Operator(s) Name or Meaning
. [] () Field access, array indexing, expression grouping
() Function call
- ~ ! sizeof()
&

Unary minus, bitwise NOT, logical NOT, sizeof, address-of

* / % Multiplication, division, modulo division
+ - Addition, subtraction
<< >> >>> Left shift, right shift, right unsigned shift
< <= > >= Less than, less than or equal, greater than, greater than or

equal
== != Equality, inequality
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
&& Logical AND
|| Logical OR
?: Conditional operator

Optimization

All expressions are evaluated at the time a structure file is compiled. If expression is successfully
evaluated to constant value (that is, it does not contain any field references), calculated value is used
instead of the expression. It is used each time a type is bound to the data, thus greatly minimizing bind
time. You can get advantage of this optimization taken by the Device Monitoring Studio: instead of

C++
const SecondsInHour = 3600; // 60 * 60
const SecondsInDay = 86400; // 60 * 60 * 24

use

C++
const SecondsInHour = 60*60;
const SecondsInDay = SecondsInHour * 24;

As the result will be the same after the source file is compiled.

Device Monitoring Studio is also capable of optimizing sub-expressions:

C++
struct A
{
 int size;
 byte data[size * (sizeof(int) - 1)];
};

Important note here is that constant sub-expression must be enclosed in parenthesis in order to be
optimized. Otherwise, Device Monitoring Studio will not optimize it because it considers a variable as
having arbitrary type:

Device Monitoring Studio Documentation Advanced Features

138

C++
var i = ...
var j = i + (5 + 3); // will be optimized to i + 8
var j = i + 5 + 3; // will not be optimized (consider the case when i is a string, for
example, which results in i + "53").

Immediates

An expression may contain an immediate value. There are several ways to specify an immediate:

Integer Number

A signed or unsigned integer number may be specified in either base 10 or base 16:

C++
9 // integer number 9
-7 // integer number -7
0x5a // integer number 90

Floating-Point Number

A floating-point number is specified in either standard or scientific notation:

C++
2.3 // floating-point number 2.3
-4e-9 // floating-point number -0.000000004

Character Constants

A character constant is one, two or four symbols enclosed in single quotation marks:

C++
'c' // integer number 99
'BM' // integer number 19778
'NTFS' // integer number 1397118030

A standard C escape character may be used inside the quotation marks:

C++
'\n' // integer number 10
'\t' // integer number 9

String Constants

String constants are only allowed in $assert directive and in $print directive. A sequence of characters
(including escape characters) enclosed in double quotation marks. Several subsequent strings are
automatically concatenated.

C++
"Hello, World!" // "Hello, World!" string
"Hello, " "World!" // the same "Hello, World!" string (automatically concatenated)
"Col1\tCol2\tCol3\n1\t2\t3" // simple table with two rows and three columns

References

Device Monitoring Studio Documentation Advanced Features

139

Device Monitoring Studio allows getting a reference to a field by using the built-in function ref. The
following operators are allowed for two references:

== operator
!= operator
< operator
<= operator
> operator
>= operator

If one argument of a binary operator is a reference and another one is not, a reference is automatically
dereferenced and then the normal operator rules apply.

In addition, a reference may be dereferenced using one of the built-in conversion functions.

Limitations

The result of ref function application may not be used with [] operator and . operator. Assign the result
of the function to the local variable and use the variable instead:

C++
struct A
{
 struct { int a,b; } field;

 var t1 = ref(field).a; // syntax error
 var r_field = ref(field);
 var t2 = r_field.a; // OK

 int array[100];
 var t3 = ref(array)[50]; // syntax error
 var r_array = ref(array);
 var t4 = r_array[50]; // OK
};

Byte Arrays

Byte arrays are introduced in version 5.15. This is a new value type in addition to previously supported
boolean , integer , floating-point , string and reference value types.

Byte arrays represent contiguous ranges in memory and usually contain unstructured data. The following
operations are supported on byte arrays:

References are implicitly converted to byte arrays if they are used in the expression with other byte
arrays. See example below.

Byte arrays may be specified as immediate values using the following syntax:

C++
struct Header
{
 unsigned char Signature[3];

 $assert(Signature == { 0x20, 0xff, 0xfe }); // Immediate byte array
 // Note the implicit conversion between the array field and byte array.
 // Array field is first automatically converted to reference and then implicitly
converted to
 // byte array
};

Other value types may be explicitly converted to byte array using the array() function.

Device Monitoring Studio Documentation Advanced Features

140

Arrays may be compared for equality and inequality. Arrays also support the following operators: < ,
> , <= and >= for which lexicographical comparison is used.

An individual element of byte array may be taken using the element() function.

A portion of an array may be extracted using the subarray() function.

A length() function returns the number of bytes in an array. This function also works with strings,
returning the length of the string.

A find() function allows you to search for an occurrence of one byte array within another one. This
function also works with strings.

Field Access

An expression may reference any field within visible scope. A field is referenced by its name, which is
case sensitive. Name lookup continues from child scope to parent scope until the match is found. If the
field is not found, constants and enumeration values are searched. If no match is found in constants and
enumeration values, an error is generated.

The following example illustrates this:

C++
enum
{
 EnumerationValue =0x20,
};

const ConstantValue = 0x30;

struct A
{
 int a;
 int Array1[a]; // references a in this structure
 int Array2[ConstantValue]; // references ConstantValue in global scope
 int Array3[EnumerationValue]; // references EnumerationValue in global scope
 struct
 {
 int Array4[a]; // references a in parent scope
 } contained;
};

Pointed to types are allowed to reference fields in pointer field's scope. It is their direct enclosing scope.
For example:

C++
struct PointedType; // forward declaration

struct PointerType
{
 int a;
 int b as PointedType *; // b is converted to a pointer to PointedType structure
 int c;
};

struct PointedType
{
 int Array[a + c]; // references a and c in PointerType (note c is declared AFTER b,
the reference is still valid)
};

this Pseudo-Field

The special field this is defined for each bound user-defined type and evaluates to the absolute offset of

Device Monitoring Studio Documentation Advanced Features

141

this bound structure.

C++
struct B
{
 // …
};

struct A
{
 int OffsetToB as B *(this); // B will automatically be bound to &A + OffsetToB
};

When passed to the built-in ref function, the result is a reference to the current object.

array_index Built-In Variable

This built-in variable evaluates to the current array element index, if the structure is being used inside an
array, otherwise it is evaluated to -1.

C++
struct B;

struct A
{
 B b[10];
};

struct B
{
 int a;
 if (array_index == 3) // array_index evaluates to a current array index
 int b;
};

current_offset Built-In Variable

This built-in variable evaluates to the address the next field will be bound to.

C++
#pragma script("get_doc_size.js") // we use a GetDocumentSize() function

struct A
{
 int b[10];
// pad this structure to the end of the file
 char padding[GetDocumentSize() - current_offset];
};

. Field Access Operator

Field access operator is used to access fields in contained scopes.

Syntax:

C++
id.id[.id[.id …]]

The following code fragment illustrates the use of the field access operator:

Device Monitoring Studio Documentation Advanced Features

142

C++
struct A
{
 struct
 {
 int c;
 } b;
 int Array[b.c]; // access the c field inside the b field
};

struct, union, case union or pointer field may be used on the left of the field access operator.

[] Array Indexing Operator

Array indexing operator allows you to reference individual array items.

Syntax:

C++
id[exp]

The following code fragment illustrates the use of the array indexing operator:

C++
struct A
{
 int Array1[10]; // static array of 10 integers
 int Array2[Array1[2]]; // dynamic array, which size is taken from the third value of Array1
array
};

Array elements are numbered from 0 to Count - 1, where Count is (static or dynamic) array size.

() Expression Grouping Operator

Expression grouping operator allows you to change the precedence rules of operators in an expression.

Syntax:

C++
(exp)

The following code fragment illustrates the use of the expression grouping operator:

C++
2 + 3 * 4 - 7 // evaluates to 7
2 + 3 * (4 - 7) // evaluates to -7

You can use parenthesis whenever you need to change the precedence of operators or increase the
readability of the expression.

() Function Call Operator

Function call operator allows you to call an internal or external function.

Syntax:

C++
id([param-list])
param-list: expr [,expr ,[…]]

Device Monitoring Studio Documentation Advanced Features

143

The following code fragment illustrates the use of the function call operator:

C++
struct A
{
 int Array1[int(10.2)]; // Call an internal cast function
 int Array2[ExternalFunction()]; // Call an external function with no parameters
};

External function calls are never optimized at compile-time. All expressions containing external function
calls will be computed at run-time.

- Unary Minus Operator

Unary minus operator change the sign of the expression.

Syntax:

C++
-exp

The following code fragment illustrates the use of the unary minus operator:

C++
-7 // evaluates to integer number -7

~ Bitwise NOT Operator

Bitwise NOT operator inverts all bits of the expression.

Syntax:

C++
~exp

The following code fragment illustrates the use of the bitwise NOT operator:

C++
~7 // evaluates to -8

This operator is not applicable to floating-point values.

& Bitwise AND Operator

This operator performs a bit-wise AND operation on its operands.

Syntax:

C++
exp1 & exp2

Usage:

C++
7 & 8 // evaluates to 0
2 & 2 // evaluates to 2

This operator is not applicable to floating-point values.

Device Monitoring Studio Documentation Advanced Features

144

^ Bitwise XOR Operator

This operator performs a bit-wise XOR (eXclusive OR) operation on its operands.

Syntax:

C++
exp1 ^ exp2

Usage:

C++
7 ^ 8 // evaluates to 15
2 ^ 2 // evaluates to 0

This operator is not applicable to floating-point values.

| Bitwise OR Operator

This operator performs a bit-wise OR operation on its operands.

Syntax:

C++
exp1 | exp2

Usage:

C++
7 | 8 // evaluates to 15
2 | 4 // evaluates to 6

This operator is not applicable to floating-point values.

! Logical NOT Operator

Logical NOT operator inverts (logically) an expression. Evaluates to 0 if the expression is non-zero or to
non-zero if the expression is zero.

Syntax:

C++
!exp

The following code fragment illustrates the use of the logical NOT operator:

C++
!7 // evaluates to 0
!0 // evaluates to 1

&& Logical AND Operator

This operator evaluates to non-zero if and only if both operands are non-zero, otherwise it evaluates to
zero.

Syntax:

Device Monitoring Studio Documentation Advanced Features

145

C++
exp1 && exp2

Usage:

C++
7 && 8 // evaluates to 1
0 && 2 // evaluates to 0
5 == 5 && 2==2 // evaluates to 1

If exp1 evaluates to zero, exp2 is not evaluated.

|| Logical OR Operator

This operator evaluates to non-zero if at least one of if its operands is non-zero, otherwise it evaluates to
zero.

Syntax:

C++
exp1 || exp2

Usage:

C++
0 || 0 // evaluates to 0
0 || 2 // evaluates to 1
5 == 5 || 2==3 // evaluates to 1

If exp1 evaluates to a non-zero value, exp2 is not evaluated.

sizeof() Operator

This operator returns the size, in bytes, of the enclosed identifier.

Syntax:

C++
sizeof(id)

id may be either a built-in type, typedef'ed type, user-defined type or field reference. Taking the size of
user-defined dynamic type is incorrect and will result in compile error.

The following code fragment illustrates the use of the sizeof() operator :

Device Monitoring Studio Documentation Advanced Features

146

C++
struct A
{
 int a;
 int b;
 int c[4];
};

struct B
{
 int a;
 int b[a];
};

struct C
{
 B b;

 const SizeOfInt = sizeof(int); // correct, evaluates to 4
 const SizeOfA = sizeof(A); // correct, evaluates to 24 (size of static user-defined
type A)
 const SizeOfB = sizeof(B); // incorrect, results in compile-time error, B is
dynamic type
 var SizeOfb = sizeof(b); // correct, will be calculated at run-time
};

& Address-Of Operator

This operator takes the address (offset) of the given field.

Syntax:

C++
&field-id

Returned address is absolute.

C++
struct A
{
 int a;
 int b;
 const OffsetTob = &b - this; // offset to field b (in bytes) from the beginning of the
 // structure is now stored in OffsetTob constant
};

* Multiplication Operator

This operator computes the multiplication of two given expressions.

Syntax:

C++
exp1 * exp2

Usage:

C++
7 * 8 // evaluates to 56
(2 + 2) * (7 - 1) // evaluates to 24

/ Division Operator

Device Monitoring Studio Documentation Advanced Features

147

This operator computes the result of division of one operand by another.

Syntax:

C++
exp1 / exp2

If the divisor evaluates to zero, a run-time error occurs. If the result of the expression is used as an
integer value, the result of the division is truncated to the nearest integer value.

C++
4 / 2 // evaluates to 2
3 / 2 // evaluates to 1
5 / 0 // a run-time error occurs

% Modulo Division Operator

This operator computes the remainder of the division of the first operand by the second operand.

Syntax:

C++
exp1 % exp2

If the divisor evaluates to zero, a run-time error occurs.

C++
4 % 2 // evaluates to 0
5 % 2 // evaluates to 1
5 % 0 // a run-time error occurs

This operator is not applicable to floating-point values.

+ Addition Operator

This operator computes the sum of two given expressions.

Syntax:

C++
exp1 + exp2

Usage:

C++
7 + 8 // evaluates to 16
2 + 2 // evaluates to 4

Addition operator may also be used in string expressions to concatenate strings or to add immediate or
field to a string.

- Subtraction Operator

This operator computes the difference between two given expressions.

Syntax:

Device Monitoring Studio Documentation Advanced Features

148

C++
exp1 - exp2

Usage:

C++
7 - 8 // evaluates to -1
2 - 2 // evaluates to 0

<< Left Shift Operator

This operator performs a left shift of the first operand. The second operand specifies how many bits to
shift.

Syntax:

C++
exp1 << exp2

Usage:

C++
7 << 1 // evaluates to 14
-3 << 3 // evaluates to -24

This operator is not applicable to floating-point values.

>> Right Shift Operator

This operator performs an arithmetic right shift of the first operand. The second operand specifies how
many bits to shift.

Syntax:

C++
exp1 >> exp2

Usage:

C++
456 >> 3 // evaluates to 57
-100 >> 2 // evaluates to -25

This operator is not applicable to floating-point values.

>>> Right Unsigned Shift Operator

This operator performs a logical (unsigned) right shift of the first operand. The second operand specifies
how many bits to shift.

Syntax:

C++
exp1 >>> exp2

Usage:

Device Monitoring Studio Documentation Advanced Features

149

C++
456 >>> 3 // evaluates to 57
-100 >>> 2 // evaluates to 1073741799 (0x3fffffe7)

This operator is not applicable to floating-point values.

< Less Than Operator

This operator evaluates to non-zero value if first operand is less than the second operand or to zero
value otherwise.

Syntax:

C++
exp1 < exp2

Usage:

C++
7 < 8 // evaluates to 1
2 < 2 // evaluates to 0

<= Less Than or Equal Operator

This operator evaluates to non-zero value if first operand is less than or equal to the second operand or
to zero value otherwise.

Syntax:

C++
exp1 <= exp2

Usage:

C++
7 <= 8 // evaluates to 1
2 <= 2 // evaluates to 1
3 <= 2 // evaluates to 0

> Greater Than Operator

This operator evaluates to non-zero value if first operand is greater than the second operand or to zero
value otherwise.

Syntax:

C++
exp1 > exp2

Usage:

C++
8 > 7 // evaluates to 1
2 > 2 // evaluates to 0
3 > 5 // evaluates to 0

>= Greater Than or Equal Operator

Device Monitoring Studio Documentation Advanced Features

150

This operator evaluates to non-zero value if first operand is greater than or equal to the second operand
or to zero value otherwise.

Syntax:

C++
exp1 >= exp2

Usage:

C++
8 >= 7 // evaluates to 1
2 >= 2 // evaluates to 1
3 >= 5 // evaluates to 0

== Equality Operator

Evaluates to non-zero value if both operands are equal or to zero otherwise.

Syntax:

C++
exp1 == exp2

Usage:

C++
7 == 8 // evaluates to 0
2 == 2 // evaluates to 1

!= Inequality Operator

Evaluates to non-zero value if operands are different or to zero otherwise.

Syntax:

C++
exp1 != exp2

Usage:

C++
7 != 8 // evaluates to 1
2 != 2 // evaluates to 0

?: Conditional Operator

This is the only supported ternary operator. It evaluates to the value of its second operand if the first
operand evaluates to non-zero value, otherwise, it evaluates to the value of the third operand.

Syntax:

C++
exp1 ? exp2 : exp3

Usage:

Device Monitoring Studio Documentation Advanced Features

151

C++
5 == 3 ? 8 : 7 // evaluates to 7
2 == 2 ? 8 : 7 // evaluates to 8

Functions

Internal Functions

Built-In Functions

Device Monitoring Studio provides a number of built-in functions:

Function Name Description
bool(exp)

Convert a given parameter exp to a
boolean value. The following
conversion rules apply:

Value's
type

Behavior

bool exp returned
int false if exp

equals to zero,
true otherwise

double false if exp
equals to zero,
true otherwise

string false if exp is an
empty string,
true otherwise

reference false if reference
is not initialized,
true otherwise

Note that when a statement expects a
boolean, it converts the passed value
to boolean automatically. The same
rules are used during this implicit
conversion.

int(exp) Convert a given parameter exp to an
integer value. Floating-point numbers
are truncated to nearest integer,
strings are parsed as containing an
integer. If parsing error occurs, the
result of the conversion is zero. If
passed string starts with 0 , it is
considered as containing octal
number. If passed string starts with
0x or 0X , it is considered as
containing hexadecimal number.
References are first dereferenced and
then converted to integer.

Device Monitoring Studio Documentation Advanced Features

152

double(exp) Convert a given parameter exp to a
floating-point value. If used on string,
a string is parsed as containing a
floating-point number. If parsing error
occurs, the result of the conversion is
zero. References are first dereferenced
and then converted to floating-point.

string(exp) Convert a given parameter exp to a
string value. References are
dereferenced.

decimal(exp) Convert a given parameter exp to an
integer value. Always treats a passed
string as containing decimal number
(regardless of any prefixes).
References are dereferenced.

hex(exp) Convert a given parameter exp to an
integer value. Always treats a passed
string as containing hexadecimal
number (regardless of any prefixes).
References are dereferenced.

octal(exp) Convert a given parameter exp to an
integer value. Always treats a passed
string as containing octal number
(regardless of any prefixes).
References are dereferenced.

binary(exp) Convert a given parameter exp to an
integer value. Always treats a passed
string as containing binary number
(regardless of any prefixes).
References are dereferenced.

convert_integer(exp, radix) Convert a given parameter exp to an
integer value. An integer's base is
passed as second argument to the
function. It is automatically converted
to integer. References are
dereferenced.

format(fmt_string, ...) This function takes a format string
fmt_string and arbitrary number of
arguments. It returns a string after
placing each passed parameter to
corresponding placeholder in a format
string.

Function Name Description

Device Monitoring Studio Documentation Advanced Features

153

visualize(ref-expr[, flags[, encoding]])
This function requires a reference to a
field and invokes a standard
visualization algorithm for the
referenced field. Use this function to
take effect of display attribute,
automatic enumeration parsing and
so on. Use optional flags value to
specify rendering options:

Value Type of Expression
0 Decimal (default)
1 Hexadecimal

substring(string, pos, [count]) This function extracts a substring from
a given string . pos is zero-based
index of the first character of the
substring and count is an optional
number of characters in a substring. If
omitted, substring continues until the
end of the string. If pos is greater
than the string length, an exception
occurs. Count can be any positive
integer or -1, which is equivalent to
omitting the parameter.

subarray(array, start_offset[, length]) This function extracts a sub-array of a
byte array. First and second
arguments are required. array is an
array from which you are extracting a
sub-array and start_offset is a zero-
based offset of the beginning of sub-
array. Optional length parameter
specifies the length of the resulting
sub-array in bytes.

element(array, position) Returns the byte at a given offset in
an array byte array.

length(exp) Return a length of a string if exp is a
string expression, or byte array (in
bytes), if exp is a byte array.

find(find_where, find_what[, start_pos) Find a substring in a string (if both
find_where and find_what
expressions are strings) or one array
within another, if both expressions are
byte arrays. Optional start_pos
parameter specifies the location from
which to start searching. It defaults to
0. The function returns integer
specifying the found location or -1 if
no occurrence is found.

Function Name Description

Device Monitoring Studio Documentation Advanced Features

154

type(exp)
Determine the type of the expression
exp. Returns one of the following
values (symbolic names are
predefined in stddefs.h):

Symbolic
Constant

Value Type of
Expression

BooleanType 0 bool

IntegerType 1 int

FloatingPointType 2 double

StringType 3 string

ReferenceType 4 reference

ref(exp)
Take the reference of expression.
Expression must be a Field Access or
Array Indexing Operator. The result of
this function may not be used on the
left of . operator or [] operator.

A special construct ref(this) is used
to get a reference to the current
object.

array(exp) Convert an expression to a byte array.
Little-endian representation of
boolean , integer and floating-point
values are returned. If exp is a
reference, a copy of referenced value
is returned as byte array. All other
conversions are prohibited.

is_valid(exp) This function evaluates the expression
and returns false if any exception
occurs during evaluation, otherwise, it
returns true . Expression's result is
never used and is silently discarded.

evaluate_if(exp1, exp2)
This function evaluates expression
exp1 and returns its result. If any
exception occurs during evaluation, it
returns the value of expression exp2 .
Note that if another exception occurs
during evaluation of exp2 , it is
handled as usual (propagated to user
interface). This function is equivalent
to

C++
is_valid(exp1) ? exp1 : exp2

but evaluates exp1 only once.

Function Name Description

Device Monitoring Studio Documentation Advanced Features

155

Examples

C++
int(2.5) // results to 2 (integer)
int("89") // results to 89 (integer)
double("7.8") // results to 7.8 (floating-point)
double("string") // results to 0.0 (floating-point)

Native Functions

Device Monitoring Studio supports native functions. A native function is a function defined in the header
file that uses the same language syntax.

The following syntax is used to define a function:

C++
optional-attributes
function f_name (parameter-list)
{
 function-body
}

optional-attributes := [function-attribute [, function-attribute [, …]]]

function-attribute := arguments_array | nooptimize

parameter-list := param-name1 [, param-name2 [, …]]

function-body := *(variable-declaration | statement)

The function may be declared at any scope (either global or user-defined). Function's name must be
unique within a scope. A function can take any number of arguments (or no arguments). It is allowed to
pass different number of arguments during a function call. If fewer arguments passed, the rest are
undefined, if more arguments passed, extra parameters are ignored.

Only the following constructs are allowed in a function body:

A declaration of constants or constant arrays.
A declaration of variables or variable arrays.
Any supported statement, including expression calculation statement.

Ability to use any statement allows you to create branches and loops. A return statement sets function's
return value and exits function. A function is allowed to have multiple return statements.

A following pseudo-variables are available for a function's body:

parameter_count

Holds the actual number of passed parameters.
arguments_array

Holds values of all passed parameters. The size of the array is parameter_count . If function has
named arguments, both named parameters and values of this array may be used to reference
passed parameters.
Note: for performance reasons this array is generated only when arguments_array attribute is
specified before the function's definition.

All parameters are always passed by value. If arguments_array attribute is specified and a function has
named arguments, corresponding array elements and named parameters have copies of values (that is,
modifying one does not modify another).

Device Monitoring Studio Documentation Advanced Features

156

Function Scope

Each function defines its own scope. All variables declared in this scope are destroyed when function
execution finishes and re-created next time it is run.

Function Optimization

Device Monitoring Studio automatically optimizes constant functions. If it encounters a function that
always returns a constant value and is being used with constant arguments, it replaces the function call
with a calculated value. That means that all native functions must be immutable, that is, they must not
affect any global state.

If you still need to use a function that modifies a global state, use the nooptimize attribute to suppress
function optimization.

Note that function optimization always works at the call site. Consider the following example:

C++
function square(x)
{
 return x * x;
}

struct A
{
 char array[square(5)]; // will be optimized to 25
 int size;
 char array2[square(size)]; // will not be optimized
};

External Functions

Attaching Scripts

External functions referenced in your structure definition files must be defined in separate files. Device
Monitoring Studio supports functions written in JavaScript.

Use the following syntax to attach a script file to the structure definition file:

C++
#pragma script(path-to-script-file)

Path-to-script-file is a string containing the absolute or relative (to the structure definition file) path
to a script file. Only JavaScript external files (with any extension) are supported.

As with included files, Device Monitoring Studio automatically rescans a file if it is modified outside the
editor.

Examples

functions.js

C++
function f()
{
 return 10;
}

Device Monitoring Studio Documentation Advanced Features

157

structure.h:

C++
#pragma script("functions.js")

public struct A
{
 char array[f()];
};

javascript Keyword

In addition, JavaScript code may be specified in the structure definition file using the javascript
keyword:

C++
javascript
{
 function f()
 {
 return 10;
 }
};

public struct A
{
 char array[f()];
};

The number of javascript blocks is not limited. All blocks are processed before any structure is bound, so
all functions declared in these blocks are always visible to any structure, regardless of the place where
you define them.

External Functions

Device Monitoring Studio allows you to use external functions in expressions. External functions are
defined in script files, attached to structure definition files using the #pragma script preprocessor
directive.

An external function accepts zero or more parameters and must always return a value (“void” functions,
or procedures are not supported). External function must be written in JavaScript.

Device Monitoring Studio automatically performs parameter type conversion when the function call is
made. Although, make sure the value returned by the function is of correct type, as Device Monitoring
Studio expects a value of a given type in several places, such as in array declaration:

functions.js:

C++
function GetArraySize()
{
 return 11/2;
}

structure.h:

Device Monitoring Studio Documentation Advanced Features

158

C++
#pragma script("functions.js")

struct A
{
 int array[GetArraySize()]; // error here: script returns a floating-point
number, integer expected
 int array[int(GetArraySize())]; // correct
};

Statements

Statements control the flow of execution. They are allowed on user-defined type scope and in the
function body. This section describes all statements supported by the Device Monitoring Studio.

The general statement syntax may be described by the following grammar:

C++
statement:
 statement-if | statement-switch | statement-break | statement-while | statement-for |
statement-dowhile | statement-return

statement-block:
 statement | field-declaration

Where field-declaration is either standard or user-defined type, or structure definition.

See the following topics for more information:

if statement
switch statement
break statement
while statement
for statement
do…while statement
return statement

if Statement

if statement has the following syntax:

statement-if:
if (expr)
 statement-block | { statement-block * }
[else
 statement-block | { statement-block * }
]

statement-block:
 statement | field-declaration

expr is evaluated at run-time and if true , the first statement-block is evaluated, otherwise, the second
statement-block is evaluated. If it is omitted and expr is false, nothing is evaluated and control flows to
the next statement or declaration. If multiple statements or declarations need to be specified in the body
of if or else, use the curly braces. For example:

Device Monitoring Studio Documentation Advanced Features

159

C++
struct A
{
 int a;
 if (a>0)
 float b;
 else
 {
 double b;
 int c;
 }
};

switch Statement

switch statement has the following syntax:

statement-switch:
switch (sw-expr)
{
 case const-case-expr1:
 statement-block *
 [case const-case-expr2:
 statement-block *
 …
]
 [default:
 statement-block +
]
}

WARNING
switch statement's block must not be followed by a ‘;’ character!

switch statement is evaluated according to the following procedure:

1. All const-case-exprN expressions are evaluated at compile time. If they fail to compute to a
constant value, compilation error occurs. If you need to use non-const expressions, consider using
the case_union.

2. sw-expr is evaluated at run time.
3. The resulting value is compared with each const-case-exprN value one by one until a match is

found. If the match is not found, statement-block after the “default:” label is evaluated, if present.
4. If the match is found, all statement blocks after the corresponding “case” label are evaluated, until

the “default:” label, end of switch statement or a break statement are met.

Device Monitoring Studio Documentation Advanced Features

160

C++
struct A
{
 BYTE type;
 switch (type)
 {
 case 0:
 int value;
 break;
 case 1:
 double value;
 break;
 case 2:
 string value;
 break;
 default:
 $assert("Invalid file");
 } // note: no ';' allowed here!
};

break Statement

break statement has the following syntax:

statement-break:
break;

NOTE
The ‘;’ character at the end of the statement is mandatory.

The break statement may be used:

Inside the switch statement to stop statement evaluation.
Inside the for statement, while statement or do…while statement to cancel a loop.

In addition, break statement always ends the current scope, even if it is used outside of the switch or
loops.

while Statement

while statement has the following syntax:

statement-while:
while (expr)
 statement-block

Evaluates statements and declarations in statement-block until expr becomes false . If expression is
false at the first iteration, no statements are evaluated.

C++
var i = 10;
while (i)
{
 int a;
 i = i - 1;
}

for Statement

Device Monitoring Studio Documentation Advanced Features

161

for statement has the following syntax:

statement-for:
for (init-expr; condition-expr; increment-expr)
 statement-block

for statement is equivalent to the following construct:

C++
init-expr;
while (condition-expr)
{
 statement-block;
 increment-expr;
}

It evaluates statements in statement-block while condition-expr evaluates to a non-zero value.

Note that unlike C/C++, all for statement expressions must be present and cannot be omitted. Device
Monitoring Studio does not support unary operators like ++ , -- , += , -= and others, so increments must
be specified in the form of i = i + 1 instead of ++i .

init-expr must have the following syntax:

C++
init-expr:
var name = expr

For example,

C++
for (var i = 0; i < 10; i = i + 1)
{
 int a;
}

do…while Statement

do…while statement has the following syntax:

statement-dowhile:
do
 statement-block
while (expr);

Evaluates statements and declarations in statement-block until expr becomes false . If expression is
false at the first iteration, statements in statement block are evaluated exactly one time.

C++
var i=10;
do
{
 int a;
 i = i - 1;
} while (i);

return Statement

return statement has the following syntax:

return expr;

Device Monitoring Studio Documentation Advanced Features

162

Evaluates the passed expression and sets the current native function's return value. It also exits the
current function. If used outside the function body, an exception is generated.

C++
function square(x)
{
 return x * x;
}

Scopes

A scope is a namespace for user-defined types, typedef-ed types, constants and native functions.

There is always a global scope, a scope that represents the source file itself. All enumerations, typedefs
and user-defined types declared in the file (and not enclosed by other user-defined types) are said to be
defined at the global scope.

C++
// beginning of the file
typedef int MyIntType;

enum MyEnum
{
 // …
};

const MyConstant = 5;

struct MyStruct
{
 // …
};

In the example above, all identifiers, that is, MyIntType , MyEnum , MyConstant and MyStruct are declared in
the global scope.

Each user-defined type creates its own scope:

C++
struct A // A is declared in the global scope and creates its own scope
{
 const B = 10; // B is declared in scope of structure A
};

Every enclosed scope “sees” all its parent scopes. That is, when name-lookup is performed (for the search
of the identifier), first, the most enclosed scope is searched. If the identifier is not found, a parent scope
is searched and so on.

This allows an identifier to be overloaded in the enclosed scope:

C++
const MyConstant = 10;
struct A
{
 const MyConstant = 5;
 int array[MyConstant]; // will use MyConstant from the A scope
};

struct B
{
 int array[MyConstant]; // will use MyConstant from the global scope
};

A compiler does not provide a way to reference MyConstant from the global scope from scope A in this

Device Monitoring Studio Documentation Advanced Features

163

example. But once the scope is closed, a global scope is active again (see structure B).

Enumerations are slightly different in a way they use scopes: enumeration declaration does not create a
scope but places all enumeration values into the parent scope. See the enumerations section for more
information.

Constants and Constant Arrays

Constants allow you to calculate the value of an expression and store it. Compare constants with
preprocessor constants. Preprocessor is run before compilation of source file occurs and therefore has
limited expression evaluation capabilities.

Syntax:

const name-id = value-expr;

Constants are allowed in any scope. A value-expr must be constant:

C++
const MyConstant = 5; // valid, constant expression

struct A
{
 int a;
 const double_a = a * 2; // error, value-expr is not a constant
};

Constant Arrays

You can use the following syntax to declare an array:

C++
const name-id [] = { initializer-list };

Where name-id is a name of array and initialize-list is a comma-separated list of expressions that
initialize array elements.

Variables and Variable Arrays

Variables work almost like constants with an exception that you can change their value at a later time.

Syntax:

C++
var name-id [= value-expr];

You do not specify the type of the variable. It is automatically determined from the type of the value-
expr. You may change the variable type at a later time by assigning another value to a variable.

Variables are allowed at user-defined type scope. If value-expression is omitted, variable is initialized
with zero. You can change the value of a variable using the following syntax:

C++
variable-name-id = expression;

Variables may be used in expressions just like constants. For example:

Device Monitoring Studio Documentation Advanced Features

164

C++
struct A
{
 var SomeVariable = 10; // declare variable and assign a value to it
// …
 SomeVariable = SomeVariable * 2 - 20; // change the value of the variable
// …
 char Data[SomeVariable]; // use variable
};

Optimizations

Device Monitoring Studio performs an optimization when it compiles variables. All constant expressions
are evaluated to their numeric equivalents. Device Monitoring Studio can also optimize constant sub-
expressions if they do not have side effects.

C++
struct A
{
 var MyConstant = 60 * 60; // will be optimized directly to 3600
 var PI = 3.1415926;
 var _2PI = 2 * PI; // will be optimized directly to 6.2831852
 int a;
 var test = a * (_2PI / 180); // sub-expression in parenthesis will be optimized
};

Using Variables

Variables let you overcome the limitations of standard lookup procedure. A good example is a definition
of a PNG file structure (installed with Hex Editor Neo). A PNG file consists of several chunks of different
type and size. Although these chunks are almost unrelated, sometimes the structure of a chunk greatly
depends on some of the fields of one of the previous chunks. Using variables you may “capture” the
value of such field and later use it in subsequent chunks to choose between one structure or another.
See the provided sample file for more information on using variables.

Variable Arrays

You can use the following syntax to declare an array:

C++
var name-id [[total-elements-expr]] [= { initializer-list }];

Where name-id is a name of array, total-elements-expr is an optional number of elements in an array. If
omitted, the number of expressions in the initializer-list sets the number of elements in an array.

initialize-list is a comma-separated list of expressions that initialize array elements.

Enumerations

Device Monitoring Studio supports the special form of integer constants, called enumerations.

Syntax:

Device Monitoring Studio Documentation Advanced Features

165

https://hhdsoftware.com/hex-editor

C++
// legacy syntax:
enum [name-id[<integer-type>]]
{
 value-id [= const-expression]
 [, value-id [= const-expression] …
]
};

// new syntax
enum [name-id[: integer-type]]
{
 value-id [= const-expression]
 [, value-id [= const-expression] …
]
};

Enumeration may optionally have a name and a type. If name is omitted, a nameless enumeration is
created. If type is omitted, it is defaulted to int.

An expression, if specified, must be a constant expression, that is, its value must be calculable at the
compile-time. You may use immediates, constants and other previously defined enumerations as well as
sizeof() operator in its static form.

If expression is omitted, the value of the current element is computed as a value of the previous element
plus one. If this is a first enumeration element, its value will be 0:

C++
enum MyEnum : unsigned
{
 FirstValue, // defaulted to 0
 SecondValue, // defaulted to 1
 ThirdValue = 5, // overridden, equals 5
 FourthValue, // defaulted to 6
 FifthValue = ThirdValue - SecondValue, // equals to 4
};

An enumeration does not create its own scope and places all values in the parent scope.

C++
enum MyEnum
{
 FirstValue =0x00000010,
 SecondValue =0x00000020
};

const test = FirstValue; // valid, as FirstValue (and SecondValue) are placed in the global
scope, parent to MyEnum's scope

Using Enumerations

You may use named enumerations as types for fields in user-defined types. If you do this, Device
Monitoring Studio will automatically recognize the enumeration value when the structure is bound to
the data. For example:

Device Monitoring Studio Documentation Advanced Features

166

C++
enum MyFlags : unsigned
{
 FIRST_BIT_SET =0x00000001,
 SECOND_BIT_SET =0x00000002,
};

struct A
{
 MyFlags flags;
};

When you bind structure A to data, flags gets visualized as following:

Data Value Display
1 FIRST_BIT_SET
2 SECOND_BIT_SET
0 0
3 FIRST_BIT_SET SECOND_BIT_SET
5 FIRST_BIT_SET 4
8 8

Device Monitoring Studio automatically parses the enumeration value and displays its symbolic name (or
names).

User-Defined Types

[public | private] (struct | union | protocol) [name-id]
{
 [element-decl; [element-decl; …]]
};

[public | private] case_union [name-id]
{
 case expression1:
 [element_decl; …]
 [
 case expression2:
 [element_decl; …]
 …
]
 [
 default:
 [element_decl; …]
]
};

element-decl:
 [(field-decl | typedef-decl | const_decl | user-defined-type-decl) ; …]

field-decl:
 type var-decl [, var-decl …] ;

var-decl:
 (id | id[expression] | id:expression | id as type-id * [(expression)])

The first syntax form allows you to define structure or union, while the second form allows you to define
a case union.

When public keyword is placed before the structure declaration, the structure becomes a public user-
defined type and appears in Protocols List Tool Window. A private keyword may be used to prevent the
structure from being listed in the list of user-defined types in the Structure Binding dialog. If omitted, a
structure declaration is private by default. Applies only to user-defined types, declared on the global

Device Monitoring Studio Documentation Advanced Features

167

scope.

A special directives may appear within a declaration of a structure, union or a case union:

C++
hidden:
visible:

A hidden: directive hides all subsequent fields and visible: directive makes fields visible. By default, all
fields are visible. Hiding a field only hides it from the screen, the field remain visible when referenced in
expressions.

This and subsequent sections provide an in-depth description of user-defined types.

Each user-defined type creates a scope. All enclosed constants, enumerations, typedefs, native functions
and user-defined types are then included into this newly created scope.

A structure, union or case union may be nameless. Nameless types are allowed anywhere besides the
global scope. A nameless type may also be used in the typedef declaration:

C++
typedef struct
{
 // …
} A;

equivalent to:

C++
struct A
{
 // …
};

while the following fragment creates a structure named A and its aliases B and C:

C++
typedef struct A
{
 // …
} B,C;

Supported Types

Structures

A structure is a combination of data fields. A structure occupies space required to store all its fields, one
by one, subject to structure packing or alignment.

A structure definition consists of zero or more of data fields:

type var-decl [, var-decl…];

where var-decl is:

(id | id[array-size-expression] | id:bit-field-size-expression | id as type-id *)

A structure may contain different fields with a same name. If such a field is referenced in expression, an []
operator may be used to address individual fields. If this operator is not used, the first field is referenced.

Device Monitoring Studio Documentation Advanced Features

168

Typedefs, constants, enumerations, native functions and nested user-defined types are also allowed
within a structure definition.

Plain field, array field, bit field and pointer field are described in more detail in their corresponding
sections.

Empty structures are eliminated from the output. See also the noautohide attribute section.

Example:

C++
struct A
{
 int a; // plain data field
 int b:3; // bit-field
 int c[10]; // array
 int d as B *; // pointer

 short s,t[5],u:12; // multiple fields may be combined
};

Packing and Alignment

The important thing about user-defined types is the size and alignment of a type. The size of the
structure is a sum of sizes of all its fields (subject to alignment). The alignment of the built-in type equals
its size, and alignment of the structure is calculated by Device Monitoring Studio, taking in account the
alignment of all structure fields and current structure packing value. By default, structure packing value is
1.

You may change the structure packing value using the following directive:

C++
#pragma pack(N)

where N is one of the following values: 1, 2, 4, 8, 16, 32.

NOTE
The following rule is used when computing the alignment of each structure field:
Each data field starts at offset which is a multiple of its alignment. A number of unused padding
bytes is inserted if required, but no more than the current structure packing value.

The implementation of structure packing and field alignment in Device Monitoring Studio complies with
standard C implementation.

Byte Order

By default, Device Monitoring Studio respects the current byte order specified for the editor window.
You can change the byte order at any time using the following directive:

C++
#pragma byte_order(LittleEndian | BigEndian | Default)

This directive changes the current byte order until the end of the current scope, or until another
byte_order directive.

Device Monitoring Studio Documentation Advanced Features

169

Unions

A union is a combination of data fields. In contrast to a structure, all union data fields are located at the
same address and, therefore, share the same storage space. The size of the union equals to the size of
the largest field, and alignment of the union equals the largest field's alignment.

A union definition consists of zero or more of data fields:

type var-decl [, var-decl…];

where var-decl is:

(id | id[array-size-expression] | id:bit-field-size-expression | id as type-id *)

A union may contain different fields with a same name. If such a field is referenced in expression, an []
operator may be used to address individual fields. If this operator is not used, the first field is referenced.

Typedefs, constants, enumerations, native functions and nested user-defined types are also allowed
within a union definition.

Plain field, array field, bit field and pointer field are described in more detail in their corresponding
sections.

Example:

C++
union A
{
 int intVal;
 short shortVal;
 double dblVal;
 char charArray[4];
 struct
 {
 int a;
 __int64 b;
 } nestedStruct;
};

Case Unions

A case union is a special construct offered by a Device Monitoring Studio to dynamically select types at
run time. It is virtually impossible to describe real-world data structures using only static types (types
offered by C compiler, for example). And although dynamic types greatly increase the flexibility of the
language to describe data structures, they still lack the ability to select one or another type based on run
time conditions.

For example, imagine we have a byte in the data structure, followed by one of three different data
structures, depending on this byte's value. Device Monitoring Studio's case unions allow you to describe
such data structure.

Case union syntax (copied from User-Defined Types section):

A union definition consists of zero or more of data fields:

Device Monitoring Studio Documentation Advanced Features

170

C++
case_union [name-id]
{
 case expression1:
 [element_decl; …]
 [
 case expression2:
 [element_decl; …]
 …
]
 [
 default:
 [element_decl; …]
]
};

element-decl:
 [(field-decl | typedef-decl | const_decl | user-defined-type-decl) ; …]

field-decl:
 type var-decl [, var-decl …] ;

var-decl:
 (id | id[expression] | id:expression | id as type-id *)

Case union consists of one or more case blocks and an optional default block. Device Monitoring Studio
evaluates each expressionN and if it is nonzero, elements immediately following a case block are used.
All other case blocks and default block are ignored. If none of case expressions is evaluated to a non-
zero value, the default block is used. If the default block is omitted, a case union becomes an empty
structure and is removed from the output.

C++
struct B
{
 // …
};

struct C
{
 // …
};

struct A
{
 BYTE val;
 case_union
 {
 case val == 0:
 int a;
 int b;
 case val == 1:
 B b;
 default:
 C c;
 } s;
};

Case Union Optimization

All case expressions are evaluated at compile time. If an expression is a non-zero constant expression, a
whole case union becomes equivalent to a corresponding structure. If all case expressions evaluate to
constant zero, the whole case union becomes equivalent to a structure with fields from the default block.
If there is no default block in a case union, it becomes an empty structure and is eliminated from the
output.

Forward Declarations

Device Monitoring Studio Documentation Advanced Features

171

Device Monitoring Studio Neo requires that each referenced type must be defined before it is used;
otherwise, the compile-time error occurs. Sometimes it is impossible or inconvenient to follow this rule.
Forward declarations allow you to declare the identifier as a user-defined type, without actually defining
it:

C++
struct B; // forward declaration of B

struct A
{
 B b; // compiles OK, as B has been declared
};

struct B // actually define B
{
 // …
};

Syntax:

(struct | union | case_union) name-id ;

name-id is required in forward declarations.

All forward declarations must be resolved before the end of the source file, otherwise an error occurs.
However, it is not an error not to resolve a forward declaration if it has not been referenced.

Data Fields

Plain Field

Plain field is an ordinary field of a given type.

Syntax:

type-id var-id;

Example of plain fields:

C++
struct B
{
 // …
};

struct A
{
 int a;
 B b;
};

Both a and b fields of structure A are plain fields.

Array Field

Array field describes an array of some data type. Array is a sequence of several values of the same type.

Syntax:

Device Monitoring Studio Documentation Advanced Features

172

[[noindex]] type-id var-id[expression];

Expression may be constant expression or dynamic expression. If it evaluates to 0, the field is removed
from the output.

Device Monitoring Studio automatically distinguishes between a simple array and an ordinary array. An
array of elements of integer and floating-point built-in types is considered a simple array. Simple arrays
do not impose a limit on a number of items and are extremely cheap to bind and consume no memory
at all. Ordinary arrays (that is, arrays of user-defined types, or string types) have a hard-coded limit on
array item count (about 2 million items) and require a corresponding amount of free RAM. A
noindex attribute may precede the array field declaration if you do not use an Array Indexing Operator
in any of the expressions to refer to elements of this array.

This will save the memory and structure binding time.

Example of array fields:

C++
struct B
{
 // …
};

struct A
{
 int a[5]; // static array, considered as simple array
 B b[a[0]]; // dynamic array (a number of elements is taken from the first element of a).
Not a simple array
};

Simple and Ordinary Arrays

Any array of elements of integer or floating-point built-in types is called a simple array. Array of
elements of other types is called an ordinary array.

The following table briefly describes the difference between two array types:

Property Simple
Array

Ordinary Array

User-defined element type
supported

No Yes

Consumes more memory as
array's size increases

No Yes

Consumes more time as array's
size increases

No Yes

Has upper array size limit No Yes
Supports [noindex] attribute No, ignored

if used
Yes, consumes less memory and
time if used on an array

“Infinite” Arrays

You are allowed to declare an array of “infinite” size when declaring an array. The following syntax is
used:

type-id var-id[*];

Device Monitoring Studio Documentation Advanced Features

173

type-id must be a user-defined type that must contain at least one $break_array directive that will
specify the last element of the “infinite” array.

This is very useful if array size is not known at the array declaration point. For example, the following
code snippet is capable of parsing a C-style null-terminated string:

C++
struct StringCharacter
{
 char c;
 if (c == 0)
 $break_array(true);
};

struct NullTerminatedString
{
 StringCharacter chars[*];
};

// Display the class usage
struct FileStructure
{
 NullTerminatedString FileName;
 NullTerminatedString Location;
 // …
};

Visualization

When Device Monitoring Studio visualizes an array, it optionally visualizes its first several values in-line.
Other values are displayed when you expand the array item. Character arrays (arrays of elements of char
and wchar_t types) are visualized as ANSI or UNICODE strings respectively.

Bit Field

Bit field is an integer field which occupies less space than the underlying integer type.

Syntax:

typeid var-id:expression;

The underlying type-id of a bit field must be an integer type. Expression may be constant expression or
dynamic expression.

Example of bit fields:

C++
struct Date
{
 unsigned short nWeekDay : 3; // 0..7 (3 bits)
 unsigned short nMonthDay : 6; // 0..31 (6 bits)
 unsigned short nMonth : 5; // 0..12 (5 bits)
 unsigned short nYear : 8; // 0..100 (8 bits)
};

The conceptual memory layout of an object of type Date is shown in the following figure.

Device Monitoring Studio Documentation Advanced Features

174

Note that nYear is 8 bits long and would overflow the word boundary of the declared type, unsigned
short. Therefore, it is begun at the beginning of a new unsigned short. It is not necessary that all bit
fields fit in one object of the underlying type; new units of storage are allocated, according to the
number of bits requested in the declaration.

The ordering of data declared as bit fields is from low to high bit, as shown in the figure above.

Pointer Field

Pointer field is functionally equivalent to a plain field but additionally describes the type this field points
to. When Device Monitoring Studio binds a pointer field, it automatically binds a pointed type at a
calculated offset.

Syntax:

type-id var-id as pointed-type-id * [(expression)];

Expression , if present, is evaluated at run-time and the result is added to a field value. type-id must be
an integer type. pointed-type-id must be a user-defined type.

Example of pointer field:

C++
struct B
{
 // …
};

struct A
{
 short ptr1 as B *;
 unsigned int ptr2 as B *(10); // B will be bound at offset (ptr2 + 10)
};

The resulting offset must be an absolute offset in a file. In cases where fields contain only relative offsets,
this keyword may be used in an expression to “convert” a relative offset to an absolute offset:

C++
struct B;

struct A
{
 short ptr1 as B *(this); // B will be bound at offset (this + ptr1)
};

When pointers are processed and pointed structures are bound at resulting offsets, the current structure
scope is used as a parent scope for a bound structure. This allows referencing its fields from the pointed
structure:

Device Monitoring Studio Documentation Advanced Features

175

C++
struct B;

struct A
{
 int a;
 int ptr as B *;
};

struct B
{
 int array[a]; // will reference a in A, if B is automatically bound via a pointer
};

Late-evaluation is performed for pointers, which allows pointed types to reference fields from the parent
scope even if they are defined below the pointer field.

Attributes

Field Attributes

Device Monitoring Studio supports a number of useful attributes that change the default behavior for
individual bound fields. You should put attributes before a field you want them affect. The following
syntax is supported:

attribute-list:
[*attribute-decl]

attribute-decl:
noindex | noautohide | read(expr) |
format(expr) | description(expr) | color_scheme(expr)

See the following sections for attribute descriptions.

Type Attributes

In addition to field attributes, a single display attribute is supported on types. It allows the user to
change the default visualization for a type.

Field Attributes

noindex Attribute

Syntax:

noindex

Specifying this attribute for an array field turns off automatic building of array index. Array index is
required for Array Indexing Operator to work properly. This attribute is ignored if used on simple array
or non-array field.

noautohide Attribute

Syntax:

noautohide

Device Monitoring Studio Documentation Advanced Features

176

By default, Device Monitoring Studio eliminates fields which have zero size during binding. Specifying
this attribute allows you to turn this behavior off.

onread Attribute

Syntax:

onread(expr)

Allows you to change the way this field is read by the Device Monitoring Studio. You may specify
expression to be evaluated each time Structure Viewer accesses the field's value.

Take the following notes into consideration:

Your expression will be evaluated each time the field's value is read from the document, even during
binding.
Device Monitoring Studio caches field values. This means that the result of your expression must be
persistent. That is, for any x and y , if x == y , expr(x) == expr(y) .

In expression you may refer to actual field's value using a special variable _1 :

C++
struct A
{
 // The following field stores the size of the array minus 2
 [onread(_1 + 2)]
 int array_size; // will be displayed as actual value + 2
 char array[array_size];
};

format Attribute

Syntax:

format(const-string-expr)

Use this attribute to set the format string used during visualizing of the field's value. Note that only part
of the full format string must be specified: instead of “{0b16}” use just “b16”. const-string-expr is
evaluated at compile time.

description Attribute

Syntax:

description(const-string-expr)

Set the field description to be displayed in Device Monitoring Studio user interface. const-string-expr is
evaluated at compile time.

color_scheme Attribute

Syntax:

color_scheme(const-string-expr)

Set the color scheme to be used by Device Monitoring Studio to visualize the field. const-string-expr is

Device Monitoring Studio Documentation Advanced Features

177

evaluated at compile time.

Type Attributes

display Attribute

Syntax:

display(expr)

This attribute may be used to override the default type's visualization algorithm.

When Device Monitoring Studio generates a value for a collapsed type, it by default displays values of
first 5 type's fields. This attribute allows you to change that.

Device Monitoring Studio evaluates the expr expression in the context of the current type (that is, you
may reference all type fields directly). The result is then converted to string and displayed in Structure
View data visualizer.

The following example renders the user-friendly MAC address:

C++
[display(format("{0b16Xw2arf0}:{1b16Xw2arf0}:{2b16Xw2arf0}:{3b16Xw2arf0}:{4b16Xw2arf0}:
{5b16Xw2arf0}",
 data[0],data[1],data[2],data[3],data[4],data[5]))]
struct MAC
{
 unsigned char data[6];
};

The following example displays the sum of array's values:

C++
function sum(r)
{
 var sum = r[0];
 for (var i = 1; i < 6; i = i + 1)
 sum = sum + r[i];
 return sum;
}

[display(sum(ref(data)))]
struct MAC
{
 unsigned char data[6];
};

Typedefs

You can create an alias for any built-in or user-defined type.

Syntax:

C++
typedef existing-type new-type-id [,new-type-id …];

Type alias definitions are allowed at any scope. existing-type must be either built-in type, enumeration
or user-defined type. Nameless types are allowed.

Device Monitoring Studio Documentation Advanced Features

178

C++
typedef int INT;
typedef struct { int a,b; } MyStruct;

struct A
{
 // …
};

typedef A B,C,D;

Typedef does not create a new type, it only creates an alias for an existing type. You may reference a
type by its original name, or by one of its aliases.

Directives

Directives are special commands to the compiler which are only allowed at non-global scope.

View the subsequent topics to get detailed description of each supported directive.

$assert Directive

Syntax:

C++
$assert(condition-expression [, message [, fatal-expression]]);

Assert directive is evaluated at run-time. First, condition-expression is evaluated. If it evaluates to non-
zero value, nothing happens. But if it evaluates to a zero value, message is displayed to the user and
structure binding is terminated. If message is omitted, standard “Assertion Failed” message is displayed.
message , if present, must be a string expression. fatal-expression , if present, must be a constant
expression. If it evaluates to a non-zero value, the assertion is fatal (this is a default behavior), that is,
fired assertion terminates structure binding. If it evaluates to zero, assertion is only informational.

Assertions are good at verifying whether the data structure is being bound to correct data.

C++
struct A
{
 int a;
 $assert(5 < a && a < 10,"a must be between 5 and 10");
};

$print Directive

Syntax:

C++
$print(var-name-string-expression, var-value-expression);

The first expression must be a constant string expression and serves as a pseudo-field name. This name
is displayed in the Structure View data visualizer. It is also added as a real field into the current scope and
may be later referenced in expressions. The second expression is a field's value. It may be either a
constant expression or a non-const expression, that will be evaluated at run time.

Device Monitoring Studio Documentation Advanced Features

179

C++
struct A
{
 int a;
 int b;
 $print("double_a", a * 2);
 $print("a/b", double(a) / b);
};

Both $print directives in the example above introduce new fields into the current scope (of struct A),
but only the first one may be referenced in expressions, because the second one has incorrect name. So,
it's OK to use any name for the first argument, but only syntactically correct ones may be referenced in
expressions.

$break_array Directive

Syntax:

C++
$break_array(const-conditional-expression);

When used in a user-defined type, unconditionally breaks an enclosed array.

The parameter, which must be a constant value, specifies whether the current element should be
included into an array (const-conditional-expression = true), or not (const-conditional-expression =
false)

May be used either in conjunction with infinite array or with an ordinary array. If used not inside an array,
the directive is ignored.

C++
struct StringCharacter
{
 char c;
 if (c == 0)
 $break_array(true);
};

struct NullTerminatedString
{
 StringCharacter chars[*];
};

$bind Directive

Syntax:

C++
$bind(type-string-expr, var-string-expr, addr-expr);

All expressions are evaluated at run time. First two are automatically converted to strings, while the third
is expected to be of integer type.

This directive instructs parser to bind another structure to a given address. Binding is delayed until the
current structure binding is successfully finished.

NOTE
You must reference the full type name, for example struct MyStruct , not the MyStruct , and the
referenced type must have been declared as public.

Device Monitoring Studio Documentation Advanced Features

180

C++
public struct B
{
// …
};

public struct A
{
 int Offset;
 if (Offset != 0)
 $bind("struct B","pB",Offset);
};

$alert Directive

Syntax:

C++
$alert(expr);

Evaluates expr at bind time and displays the result in a message box.

$revert_to Directive

Syntax:

C++
$revert_to(reference-expression);

This directive updates the current_offset . It may be used to have look ahead in a structure.
reference-expression is evaluated at run-time and must be a reference to a field in the current type.
After this directive executes, current_offset becomes the start of a field.

C++
struct A
{
 int type;
 switch (type)
 {
 case 0:
 B b;
 break;
 case 1:
 C c;
 break;
 default:
 $revert_to(ref(type));
 D d;
 }
};

$shift_by Directive

Syntax:

C++
$shift_by(integer-expression);

This directive updates the current_offset . It may be used to have look ahead in a structure.
integer-expression is evaluated at run-time and must be an integer value, which is added to

Device Monitoring Studio Documentation Advanced Features

181

current_offset upon directive execution.

C++
struct A
{
 int skip_bytes;
 $shift_by(skip_bytes);
 int next_field;
};

$remove_to Directive

Syntax:

C++
$remove_to(reference-expression);

This directive removes one or more last bound fields until the referenced field. reference-expression is
evaluated at run-time and must be a reference to a field in the current type.

WARNING
All fields being removed must be visible and no hidden fields must be between them.

C++
struct A
{
 int type;
 switch (type)
 {
 case 0:
 B b;
 break;
 case 1:
 C c;
 break;
 default:
 $remove_to(ref(type));
 D d;
 }
};

Format String Syntax

This section describes the format string syntax. Format string is used in format() function and format
attribute.

Library format string syntax is not compatible with the standard printf syntax. Instead, it has a different
syntax.

The format string has blocks of plain text which are directly copied to the output and parameter
placeholders. Each placeholder has the following syntax:

{<param-index>[width-decl][alignment-decl][plus-decl]
[precision-decl][base-decl][padding-decl][ellipsis-decl]
[locale-decl]}

The placeholder must be enclosed in curly braces. If you need to use the opening curly brace in the text,
you need to duplicate it to distinguish from the placeholder beginning. There is no need to escape the
closing brace, it will always be parsed correctly.

Device Monitoring Studio Documentation Advanced Features

182

Parameter declaration starts with a parameter’s number. This is the only mandatory field. Parameters are
ordered starting from zero. All subsequent declarations are optional. If several declarations are used,
their order is not significant and there must be no space or any other separator between them.

width-decl

Use this declaration to limit the minimum and/or maximum length of a rendered parameter, in
characters. The syntax of a declaration is one of:

w<min-width>,<max-width>
w<min-width>
w,<max-width>

Both min-width and max-width must be decimal integers and if specified, max-width must be larger
than min-width .

alignment-decl

Use this declaration to set parameter alignment. It is ignored unless width-decl is also used. Use
one of:

al – align left (default)
ar – align right
ac – align center

plus-decl

Forces the plus sign to be rendered for positive numbers. Syntax:
+

precision-decl

Use the declaration to specify the number of digits to be displayed after the comma. Used only for
floating-point types. If not specified, the default one (6) is used.

p<number>

base-decl

Specify a base for an integer. If any base besides 10 is used with the floating-point type, only the
integer part is rendered. Only bases of 2, 8, 10, and 16 are supported. Lowercase or uppercase
hexadecimal may be specified:

b2 – binary
b8 – octal
b10 – decimal (default)
b[0]16[x] – lowercase hexadecimal. If prefix “0” is used, library adds “0x” before the number
b[0]16X – uppercase hexadecimal. If prefix “0” is used, library adds “0X” before the number

padding-decl

Set the character to fill the space when min-width is set (see the width-decl above). The default one
is space.

f<character>

ellipsis-decl

Add the ellipsis sign when truncating output. It is not compatible with center alignment (will act as
left alignment).

e

locale-decl

Separate thousands with the default user locale's thousand separator. Will work only for base 10.
l

Errors

Device Monitoring Studio Documentation Advanced Features

183

This topic describes all compilation and binding errors generated by Device Monitoring Studio.

CE001 : The requested operation is not allowed on the given data type or not expected here
Operation or operator you attempted to use is not supported. Example:

C++
var result = "string" - 2; // operator - is not supported for strings

CE002 : Divison by zero
Divison by zero has been encountered.

C++
int array[5/0];

CE003 : The specified identifier was not found
You referenced the previously undeclared identifier.

C++
public struct A
{
 int a;
 int b;
 int arr[c]; // generates CE003, c is undeclared
};

CE004 : Scalar is expected
A requested operation is allowed only on scalar values.

C++
public struct A
{
 int data[10];
 int array[data]; // generates CE004, data is not a scalar
};

CE005 : Vector is expected
A requested operation is allowed only on vector values.

C++
public struct A
{
 int a;
 int b[a[1]]; // generates CE005, a is not a vector
};

CE006 : Array index is out of range
An attempt to access array's element that is outside of the declared array size.

C++
public struct A
{
 int a[10];
 int b[a[12]]; // generates CE006, a only has 10 elements (0..9)
};

CE007 : Not implemented yet
This operation has not yet been implemented.

CE008 : Invalid bit field size

Device Monitoring Studio Documentation Advanced Features

184

Unsupported bit field size is used.
CE009 : Syntax error

See error's additional message for detailed syntax error information.
CE010 : Type has only been forward-declared

An attempt to materialize a type that has only been forward-declared is detected.

C++
// forward declare B
struct B;

public struct A
{
 B data; // generates CE010
};

// end of file

CE011 : Operation not supported for dynamic type
sizeof operator is used with dynamic type.

C++
struct B
{
 int size;
 char data[size];
};

public struct A
{
 char reserved[sizeof(B)]; // generates CE011, B is dynamic type
};

CE012 : Type is redefined
An attempt to redefine already defined type is detected.

C++
struct B
{
 int a;
};

struct B // generates CE012
{
 int c;
};

CE013 : Assertion failed
Assertion (generated by $assert directive) has failed.

CE014 : Constant expression is expected
Compiler expects a constant expression here.

CE015 : Constant string expression is expected
Compiler expects a constant string expression here.

CE016 : Wrong number of arguments for a function call
An invalid number of arguments used in a call to built-in function.

CE017 : Subscript operation for non-indexed array (hint: remove [noindex] attribute)
[] operator has been used for non-indexed array. Remove the noindex attribute.

Device Monitoring Studio Documentation Advanced Features

185

C++
struct B { … };

struct A
{
 [noindex] B data[1000];

 char reserved[data[5].size]; // generates CE017, remove [noindex] from previous line
};

CE018 : Error returned by JavaScript engine
JavaScript function returned an error.

CE019 : Invalid argument
Invalid argument has been passed to built-in function.

CE020 : Maximum allowed recursion depth is reached
Check your source file for infinite recursion.

C++
struct B;

struct A
{
 B b;
};

struct B
{
 A a;
};

// will generate CE020 after several iterations

CE021 : Expression of another type is expected
Compiler expects expression of another type here. Additional information specifies what type is
expected.

Scripting
Device Monitoring Studio's scripting module exposes programming interfaces for a number of
application internal objects. The current implementation exposes interfaces for the following objects:

Scripting Site Object
Monitoring Object
Serial Terminal Object
MODBUS Builder Object
Network Manager Object
Remote Connection Manager Object
Bridge Manager Object
File Manager Object
HID Manager Object

Future releases of the Device Monitoring Studio (Serial, USB, Network Sniffer) will extend the list of
scriptable objects.

Scripting System Changes

Version 8.03 adds HID Manager Object.

Version 8.02 updates the scripting support:

Device Monitoring Studio Documentation Advanced Features

186

Script Debugger
Script debugger provides step-by-step execution, breakpoints, evaluation of variables and viewing
of stack trace.

File Manager Object
File Manager Object provides access to a file system.

Network Manager Object
Network Manager Object encapsulates TCP session, UDP session and TCP Listener objects.

Reworked Serial Terminal
Serial Terminal Object has been updated with breaking changes.

Reworked MODBUS Scripting API
MODBUS Send Object has been removed and new MODBUS Builder Object has been introduced.

Version 7.81 updates the scripting support:

Updated TypeScript
TypeScript has been updated to version 2.3.

JavaScript ES2017 support
The included compiler now supports JavaScript ES2017, including async / await .

Network Manager Object (breaking change)
TCP Manager Object has been renamed to Network Manager Object.

UDP session
Added support for UDP Session.

delay function
A new global function delay has been added.

Version 7.70 updates the scripting support:

TypeScript support
TypeScript is now always enabled.

JavaScript ES6 support
JavaScript ES6 is now supported by default.

JavaScript typed arrays are now used in API
Various API functions and events have been updated to use typed arrays.

Better performance
Scripting system has increased performance.

Scripting support in version 7.13 has changed significantly. This section lists all changes and also marks
breaking changes:

Scripting language support (breaking change)
Only JavaScript is supported. Support for other scripting languages (like VBScript) has been
discontinued.

Naming convention (breaking change)
New method naming scheme: camelCase.

New event system (breaking change)
Device Monitoring Studio does not use Automation-compatible event system anymore. Instead,

Device Monitoring Studio Documentation Advanced Features

187

user script may directly bind JavaScript functions as event handlers. This simplifies event binding
and consuming.

Simplification of many methods (breaking change)
Many MODBUS and Serial Terminal methods were simplified. For example, methods that took a
variable number of arguments now receive a single JavaScript array argument.

Updated Scripting Site object (breaking change)
Several methods of Scripting Site object have been updated and a few new ones added.

New built-in object: Monitoring
New monitoring object provides methods to create, configure and manage monitoring sessions.

(Optional) support for TypeScript
User scripts may now be written in TypeScript (superset of JavaScript) for better syntax and strong
type-checking. If supported by user operating system, user scripts are always checked against a
TypeScript interface definition providing better error reporting and syntax checking. TypeScript
compiles to plain JavaScript which is then executed.

Scripting in User Interface

Scripting Tool Window has been removed in Device Monitoring Studio 7.13. Now user scripts are
opened in their own client windows inside application frame.

Working with Scripts

To create new empty script file, execute the File » New » Script command. To open an existing script
file, execute the File » Open… command.

Script files are opened in their own windows. You may use the built-in editor to modify script text.

Running Scripts

To start script execution, execute the Tools » Run Script command. TypeScript compiler is invoked first
to compile the user script. During compilation, an extensive syntax error detection is performed. If any
errors are found, they are displayed in script output and highlighted in the script text.

After script is checked and compiled, the execution of its global scope starts. It continues until the last
statement of the global scope finishes execution. Script is then halted but not stopped completely. This
is done in order for script to be able to process scheduled asynchronous functions or bound events.
Note that scheduled asynchronous functions and bound event handlers cannot be executed until the
global script scope execution is finished. The exception is event handlers invoked during execution of the
main script body.

To stop script execution, use the Tools » Stop Script command.

Persistence

There are a number of options that govern the behavior of automatic script persistence. All these
options are configured in the Tools » Settings, General Tab.

“Reload scripts on startup” option loads all named scripts each time application is started.
“Ask to save unsaved scripts on close” option pops up a message box asking you to save all
modified scripts on application close.
“Include scripting configuration into workspace” option includes all opened scripts into the
workspace.

Device Monitoring Studio Documentation Advanced Features

188

Command Line Support

Full paths to script files passed in command line to Device Monitoring Studio are automatically loaded
and opened. If -run option prepends a path, corresponding script file is automatically executed after
being opened.

Debugging Scripts

To start script debugging put at least one breakpoint and execute the Debug » Debug Script
command.

Placing Breakpoints
To place a breakpoint use a mouse (click on the leftmost area next to a line you want to put
breakpoint on) or move the cursor to the line and execute the Debug » Toggle Breakpoint
command.

Other commands in the Debug menu allow you to remove all breakpoints or to break a running script
asynchronously.

Whenever a breakpoint is hit, script execution enters the break state.

Break State

While in break state, Debug Watch Tool Window and Debug Stack Trace Tool Window display the
current execution state. Debug Watch window automatically shows you all local and global variables
and allows entering new variable names or expressions to execute and display. Debug Stack Trace
window shows you the current stack frame and all calling frames. You can switch to any frame by
double-clicking it in the list to change the context of the Debug Watch window.

Stepping through the Code

While in break state, use the following commands to step through the code:

Step In
This command executes the current statement and then enters the break state again. If the current
statement is a function call, execution “enters” the function and stops at the function beginning.

Step Over
This command executes the current statement and then enters the break state again. If the current
statement is a function call, the function body is executed and execution stops again when the
function returns.

Step Out
Continues execution until the currently executed function returns to its caller.

Continue
Continues the execution until the next breakpoint is hit or script execution finishes.

What Can I do with Scripting?

In current implementation, Scripting module provides access to the following objects:

Scripting Site Object
Monitoring Object
Serial Terminal Object
MODBUS Builder Object
Network Manager Object

Device Monitoring Studio Documentation Advanced Features

189

Remote Connection Manager Object
Bridge Manager Object
File Manager Object
HID Manager Object

Event Binding

Some of the objects available for scripting provide one or more events. For example, Serial Terminal
Session Object exposes two events: ITerminalSession.sent and ITerminalSession.received. Remote
Connection Manager provides the IRemoteHost.connected and IRemoteHost.disconnected events.

To bind a function to event, call the first function overload passing the function object that matches the
required signature. This function returns an event id that user script may pass to the second event
overload to unbind the event handler. It is not mandatory to unbind the handler before the target object
is destroyed.

Once bound, the passed function object is executed each time the object event fires.

When the last statement of the global scope finishes execution, script execution is halted, but not
stopped completely. This is done in order for script to be able to process scheduled asynchronous
functions, bound events and promises continuations.

TypeScript
// Bind function to IRemoteHost.connected event
var bound_event_id = remote.connected(name => alert("Connected to " + name));

// Connect to remote computer
remote.connectServer("servername");

// Successful connection will cause our event handler to be called
// ...

// Optionally, disconnect our handler
remote.connected(bound_event_id);

Scripting Site Object

Scripting Site object provides a way for a script to display text in script console window (see alert
function for more information). It also allows a script to query a user for some text, using the input
function.

Event binding has changed in version 7.13. Now objects expose events directly. User script may bind an
anonymous JavaScript function to be called when event is fired.

Scripting site object also provides the ability for delayed execution using async function. cancelAsync
function may be used to cancel delayed execution. loadTextFile function can be used to load the
contents of a text file into a string variable.

delay function returns a promise object that gets completed in a given number of milliseconds.

The Scripting Site object is “virtual”. Its methods are declared in global scope.

IScriptingSite Interface

Device Monitoring Studio Documentation Advanced Features

190

TypeScript
interface IScriptingSite {

 // Methods
 alert(message: string): void;
 input(message: string): string;
 async(handler: () => void, ms: number, repetitive?: boolean): number;
 cancelAsync(handlerId: number): void;
 loadTextFile(path: string): string;
 delay(ms: number): Promise<void>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IScriptingSite Methods

alert

TypeScript
alert(message: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

message

The string to print in the script console. Add the ‘\n’ character to the string to insert a new line.

Description

Prints the given string to the script console.

Example

TypeScript
for (var i = 0; i < 100; i++)
 alert("i equals to " + i + "\n");

input

TypeScript
input(message: string): string;

C#
// This method is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

191

C++
// This method is not available in native environment

Parameters

message

The message to be displayed to the user.

Return Value

The string entered by the user.

Description

Displays a message to the user and asks him to enter the line of text. The method then returns the text
returned by the user. The call to this method results in a message box to be displayed.

Example

TypeScript
var name = input("Enter your name:");
alert("Hello, " + name);

async

TypeScript
async(handler: () => void, ms: number, repetitive?: boolean): number;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

handler

JavaScript function that takes no parameters and returns nothing. This function is invoked after ms
milliseconds once or until cancelled, depending on the repetitive parameter.

ms

A number of milliseconds to wait until calling the passed function.
repetitive

An optional boolean that tells if async handler should be called once (repetitive is omitted or
equals to false) or until cancelled (repetitive equals to true).

Return Value

Returns an asynchronous function identifier. You may pass this identifier to IScriptingSite.cancelAsync
method to cancel delayed function.

Description

Schedules a passed Javascript function for delayed execution. A caller may optionally specify if the
async function should be repetitive.

Device Monitoring Studio Documentation Advanced Features

192

Example

TypeScript lambda that is executed once after 1 second:

TypeScript
async(() => alert("Async handler executed"), 1000);

JavaScript function that is invoked every 2 seconds until cancelled after 20 seconds:

JavaScript
var h1 = async(function() { alert("Async handler executed"); }, 2000, true);
async(function() { cancelAsync(h1); }, 20000);

cancelAsync

TypeScript
cancelAsync(handlerId: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

handlerId

Async handler identifier to cancel.

Description

Cancels pending async handler.

Example

JavaScript function that is invoked every 2 seconds until cancelled after 20 seconds

JavaScript
var h1 = async(function() { alert("Async handler executed"); }, 2000, true);
async(function() { cancelAsync(h1); }, 20000);

loadTextFile

TypeScript
loadTextFile(path: string): string;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Device Monitoring Studio Documentation Advanced Features

193

path

Full path to a text file.

Description

Loads contents of a text file into a string.

Example

Load text file into string and print it:

JavaScript
alert(loadTextFile("c:\\temp\\test.js"));

delay

TypeScript
delay(ms: number): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

ms

A number of milliseconds to wait until completing the returned promise object.

Description

Returns a promise that gets completed in a given number of milliseconds.

Example

Using await:

TypeScript
async function test() {
 // ...
 await delay(500);
 // ...
}

Using continuations:

TypeScript
delay(500).then(() => { ... });

Monitoring Object

Monitoring object provides monitoring session management. It is exposed by the global object
monitoring and implements the IHost interface.

User script may query the list of all running monitoring sessions with IHost.sessions property or create

Device Monitoring Studio Documentation Advanced Features

194

new monitoring session using IHost.createSession method.

Automatic Generation of Session Configuration Script

Device Monitoring Studio support automatic generation of script code that creates, configures and starts
a monitoring session. To get this automatically generated script, open the Session Configuration
Window, add Devices, add and configure Data Visualizers, configure Capture Filter and press the
Generate Script button.

IHost Interface

TypeScript
interface IHost {
 // Properties
 sessions: ISession[];

 // Methods
 createSession(deviceName?: string, serverName?: string): ISession;
 createSession(device?: { serial: string }, serverName?: string): ISession;
 createSession(device?: { usb: { device?: string; port?: number; address?: number; } },
serverName?: string): ISession;
 createSession(device?: { network: string }, serverName?: string): ISession;
 createSession(device?: { virtual: any }, serverName?: string): ISession;
 createSession(device?: { playback: { path: string; stream?: number; } }, serverName?:
string): ISession;
 createSession(device?: { bridge: string | IBridge }, serverName?: string): ISession;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHost Properties

sessions

TypeScript
sessions: ISession[];

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the array of session objects.

Example

Obtain a list of monitoring sessions and print their states:

Device Monitoring Studio Documentation Advanced Features

195

JavaScript
var sessions = monitoring.sessions;
for (var i = 0; i < sessions.length; ++i)
 alert(sessions[i].state);

IHost Methods

createSession

TypeScript
createSession(deviceName?: string, serverName?: string): ISession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

deviceName

An optional string which is parsed by each installed data source in turn until the matched device is
found. If omitted, device may later added using ISession.addDevice method.

serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Creates an unconfigured monitoring session. You must finish configuring the monitoring session
before starting it with a call to start it. This method may be passed the same arguments as in
ISession.addDevice method.

createSession

TypeScript
createSession(device?: { serial: string }, serverName?: string): ISession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

A serial device identifier (full name or COM port).
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is

Device Monitoring Studio Documentation Advanced Features

196

created.

Description

Creates an unconfigured monitoring session. You must finish configuring the monitoring session
before starting it with a call to start it. This method may be passed the same arguments as in
ISession.addDevice method.

createSession

TypeScript
createSession(device?: { usb: { device?: string; port?: number; address?: number; } },
serverName?: string): ISession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

An USB device (located either by full device name, port or address, or any combination).
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Creates an unconfigured monitoring session. You must finish configuring the monitoring session
before starting it with a call to start it. This method may be passed the same arguments as in
ISession.addDevice method.

createSession

TypeScript
createSession(device?: { network: string }, serverName?: string): ISession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

A network device identifier (full adapter name).
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is

Device Monitoring Studio Documentation Advanced Features

197

created.

Description

Creates an unconfigured monitoring session. You must finish configuring the monitoring session
before starting it with a call to start it. This method may be passed the same arguments as in
ISession.addDevice method.

createSession

TypeScript
createSession(device?: { virtual: any }, serverName?: string): ISession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

An object of the following type: to reference Import Data Source.
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Creates an unconfigured monitoring session. You must finish configuring the monitoring session
before starting it with a call to start it. This method may be passed the same arguments as in
ISession.addDevice method.

createSession

TypeScript
createSession(device?: { playback: { path: string; stream?: number; } }, serverName?: string):
ISession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

An object which references a given log file and optionally a stream in it.
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is

Device Monitoring Studio Documentation Advanced Features

198

created.

Description

Creates an unconfigured monitoring session. You must finish configuring the monitoring session
before starting it with a call to start it. This method may be passed the same arguments as in
ISession.addDevice method.

createSession

TypeScript
createSession(device?: { bridge: string | IBridge }, serverName?: string): ISession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

A serial bridge name or a reference to IBridge interface.
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Creates an unconfigured monitoring session. You must finish configuring the monitoring session
before starting it with a call to start it. This method may be passed the same arguments as in
ISession.addDevice method.

Example

Create new (unconfigured) monitoring session:

Device Monitoring Studio Documentation Advanced Features

199

JavaScript
// Create new monitoring session (without adding device):
var session = monitoring.createSession();

// Create new monitoring session and add COM1 serial device to it (use automatic matching):
var session = monitoring.createSession("COM1");

// Create new monitoring session and add specific serial device:
var session = monitoring.createSession({ serial: "Communications Port (COM1)" });

// Create new monitoring session and add specific USB device:
var session = monitoring.createSession({ usb: { device: "USB Input Device", port: 4, address:
1 } });

// Create new monitoring session and add specific network adapter:
var session = monitoring.createSession({ network: "Realtek PCIe GBE Family Controller(802.3)"
});

// Create new monitoring session and add specific log file:
var session = monitoring.createSession({ playback: { path: "C:\\temp\\Communications Port
(COM1)$140408$1.dmslog8", stream: 0 } });

// Create remote monitoring session for serial port
var session = monitoring.createSession("COM5", "remote_server_name");

Monitoring Session Object

Monitoring session object represents a monitoring session. It exposes the ISession interface. User script
gets a reference to the session object either through IHost.sessions property or by calling the
IHost.createSession method.

To query the current session state, check the ISession.state property.

Adding Devices and Configuring Session

Before monitoring session can be started, at least one device must be added to the session. A device
may be added directly during a call to IHost.createSession method, or later using ISession.addDevice
method. After the first device is added to the session, a session gets its Data Source. Data source may
not be subsequently changed, therefore, if user script needs to add another device to the session, it
must add device of the same type (that is, serial device to serial session, USB device to USB session and
so on).

If assigned Data Source supports (or requires) configuration, it can be configured using
ISession.configureSource method. Session's Capture Filter may be configured by calling
ISession.setCaptureFilter method.

Devices of any installed data source, except Remote Source, may be added from user scripts.

Use the ISession.precise property to change time measurement mode.

Adding Visualizers

After device(s) have been added to the session, one or more Data Visualizers must be added. User scripts
call ISession.addVisualizer or its overloads to add data visualizers to the session and optionally configure
their parameters. All supported data visualizers may be added from user scripts.

Running Monitoring Session

After the session is configured, it may be started with a call to ISession.start method. Session may be
paused (ISession.pause) and resumed (ISession.resume) later. To stop a monitoring session, user script

Device Monitoring Studio Documentation Advanced Features

200

needs to call ISession.stop method. Session object becomes invalidated after this method returns and
should not be used anymore.

Use the ISession.saveToLog method to execute the Save to Log command for the current session.

ISession Interface

TypeScript
interface ISession {
 // Properties
 readonly state: Session.State;
 precise: boolean;
 readonly visualizers: IVisualizer[];

 // Methods
 addDevice(deviceName?: string, serverName?: string): void;
 addDevice(device?: { serial: string }, serverName?: string): void;
 addDevice(device?: { usb: { device?: string; port?: number; address?: number; serialNumber?:
string; } }, serverName?: string): void;
 addDevice(device?: { network: string }, serverName?: string): void;
 addDevice(device?: { virtual: any }, serverName?: string): ISession;
 addDevice(device?: { playback: { path: string; stream?: number; } }, serverName?: string):
void;
 addDevice(device?: { bridge: string | IBridge }, serverName?: string): void;
 addVisualizer(name: string): IVisualizer;
 addVisualizer(name: "Data Recording",
 config?: VisConfig.Recorder): DataRecording.IRecordingVisualizer2;
 addVisualizer(name: "Structure View",
 structure_view_config?: { filter?: VisConfig.Filter; bind?: string; }): IVisualizer;
 addVisualizer(name: "Raw Data View",
 raw_data_view_config?: { filter?: VisConfig.Filter; bind?: string; }): IVisualizer;
 addVisualizer(name: "PPP View",
 ppp_view_config?: { filter?: VisConfig.Filter; bind?: string; }): IVisualizer;
 addVisualizer(name: "Raw Exporter",
 raw_exporter_config?: { exporter: VisConfig.Exporter; filter?: VisConfig.Filter; bind?:
string; }): IVisualizer;
 addVisualizer(name: "Text Exporter",
 text_exporter_config?: { exporter: VisConfig.Exporter; filter?: VisConfig.Filter; bind?:
string; }): IVisualizer;
 start(): void;
 stop(): void;
 pause(): void;
 resume(): void;
 setCaptureFilter(config: VisConfig.Filter): void;
 configureSource(config: { playback: Playback.Config }): void;
 configureSource(config: { path: string }): void;
 configureSource(config: { serial: Serial.CommunicationsMode; }): void;
 configureSource(config: { serial: { mode: Serial.CommunicationsMode; script?: string;
discardEmptyReads?: boolean; terminal?: IDeviceConfig; } }): void;
 configureSource(config: { multi: Multi.Color[]; }): void;
 saveToLog(config: VisConfig.Recorder): Promise<void>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ISession Properties

state

Device Monitoring Studio Documentation Advanced Features

201

TypeScript
readonly state: Session.State;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns current session state.

precise

TypeScript
precise: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns or sets current session's precise timing mode. Timing mode may only be changed before the
session is started.

visualizers

TypeScript
readonly visualizers: IVisualizer[];

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns an array of references to data visualizer objects.

WARNING
Note that each time you query this property, a new object is created for each data visualizer. This
means that expression session.visualizers[0] === session.visualizers[0] will never be true.
Use the IVisualizer.equals method to test whether two references describe the same object.

Device Monitoring Studio Documentation Advanced Features

202

ISession Methods

addDevice

TypeScript
addDevice(deviceName?: string, serverName?: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

deviceName

An optional string which is parsed by each installed data source in turn until the matched device is
found. If omitted, device may later added using ISession.addDevice method.

serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Adds a specified device to the session. A monitoring session may have several devices but they all must
be of the same type.

This overload uses generic string matching. It cycles through all installed modules and performs exact
device name match. Serial module also supports device names of the form “COMx” where x is a
number from 1 to 255.

addDevice

TypeScript
addDevice(device?: { serial: string }, serverName?: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

A serial device identifier (full name or COM port).
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Device Monitoring Studio Documentation Advanced Features

203

Adds a specified device to the session. A monitoring session may have several devices but they all must
be of the same type.

addDevice

TypeScript
addDevice(device?: { usb: { device?: string; port?: number; address?: number; serialNumber?:
string; } }, serverName?: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

An USB device to connect to. Empty configuration object means “Next connected device”. A
combination of device , port and address fields use to identify the device you want to monitor.
Alternatively, use the serialNumber field to identify the device.

serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Adds a specified device to the session. A monitoring session may have several devices but they all must
be of the same type.

addDevice

TypeScript
addDevice(device?: { network: string }, serverName?: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

A network device identifier (full adapter name).
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Device Monitoring Studio Documentation Advanced Features

204

Adds a specified device to the session. A monitoring session may have several devices but they all must
be of the same type.

addDevice

TypeScript
addDevice(device?: { virtual: any }, serverName?: string): ISession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

An object of the following type: to reference Import Data Source.
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Adds a specified device to the session. A monitoring session may have several devices but they all must
be of the same type.

addDevice

TypeScript
addDevice(device?: { playback: { path: string; stream?: number; } }, serverName?: string):
void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

An object which references a given log file and optionally a stream in it.
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Adds a specified device to the session. A monitoring session may have several devices but they all must
be of the same type.

Device Monitoring Studio Documentation Advanced Features

205

addDevice

TypeScript
addDevice(device?: { bridge: string | IBridge }, serverName?: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

A serial bridge name or a reference to IBridge interface.
serverName

Optional remote server name. If omitted, or passed empty string or ".", local monitoring session is
created.

Description

Adds a specified device to the session. A monitoring session may have several devices but they all must
be of the same type.

Example

Adding devices to the session:

JavaScript
var session = monitoring.createSession();

// Add COM1 serial device to it (use automatic matching):
session.addDevice("COM1");

// Add specific serial device:
session.addDevice({ serial: "Communications Port (COM1)" });

// Add specific USB device:
session.addDevice({ usb: { device: "USB Input Device", port: 4, address: 1 } });

// Add specific network adapter:
session.addDevice({ network: "Realtek PCIe GBE Family Controller(802.3)" });

// Add specific log file:
session.addDevice({ playback: { path: "C:\\temp\\Communications Port (COM1)$140408$1.dmslog8",
stream: 0 } });

// Create remote monitoring session for serial port
session.addDevice("COM5", "remote_server_name");

addVisualizer

TypeScript
addVisualizer(name: string): IVisualizer;

C#
// This method is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

206

C++
// This method is not available in native environment

Parameters

name

Data visualizer name.

Description

Adds a data visualizer to the session. The method takes a name of data visualizer and an optional
configuration object. Several data visualizers support configuration while some require it.

This method is overloaded to help check syntax.

addVisualizer

TypeScript
addVisualizer(name: "Data Recording",
 config?: VisConfig.Recorder): DataRecording.IRecordingVisualizer2;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

Name of the Data Recording processing module.
config

Optional logging configuration object.

Description

Adds a Data Recording component to the session.

addVisualizer

TypeScript
addVisualizer(name: "Structure View",
 structure_view_config?: { filter?: VisConfig.Filter; bind?: string; }): IVisualizer;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

Device Monitoring Studio Documentation Advanced Features

207

Name of the Structure View data visualizer.
structure_view_config

Optional configuration object which configures visualizer's Display Filter (filter object) and Root
Protocol (bind string). See VisConfig.Filter for more information on configuring Display Filter. Root
Protocol may be configured using the bind parameter.

Description

Adds a Structure View data visualizer to the session.

addVisualizer

TypeScript
addVisualizer(name: "Raw Data View",
 raw_data_view_config?: { filter?: VisConfig.Filter; bind?: string; }): IVisualizer;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

Name of the Raw Data View data visualizer.
raw_data_view_config

Optional configuration object which configures visualizer's Display Filter (filter object) and Root
Protocol (bind string). See VisConfig.Filter for more information on configuring Display Filter. Root
Protocol may be configured using the bind parameter.

Description

Adds a Raw Data View data visualizer to the session.

addVisualizer

TypeScript
addVisualizer(name: "PPP View",
 ppp_view_config?: { filter?: VisConfig.Filter; bind?: string; }): IVisualizer;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

Name of the PPP View data visualizer.

Device Monitoring Studio Documentation Advanced Features

208

ppp_view_config

Optional configuration object which configures visualizer's Display Filter (filter object) and Root
Protocol (bind string). See VisConfig.Filter for more information on configuring Display Filter. Root
Protocol may be configured using the bind parameter.

Description

Adds a PPP View data visualizer to the session.

addVisualizer

TypeScript
addVisualizer(name: "Raw Exporter",
 raw_exporter_config?: { exporter: VisConfig.Exporter; filter?: VisConfig.Filter; bind?:
string; }): IVisualizer;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

Name of the Raw Exporter data processing module.
raw_exporter_config

Configuration object must configure the exporter settings and may optionally configure Display
Filter (filter object) and Root Protocol (bind string). To configure exporter, see the
VisConfig.Exporter topic for more information.

Description

Adds a Raw Exporter data processing module to the session.

addVisualizer

TypeScript
addVisualizer(name: "Text Exporter",
 text_exporter_config?: { exporter: VisConfig.Exporter; filter?: VisConfig.Filter; bind?:
string; }): IVisualizer;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

Name of the Text Exporter data processing module.

Device Monitoring Studio Documentation Advanced Features

209

text_exporter_config

Configuration object must configure the exporter settings and may optionally configure Display
Filter (filter object) and Root Protocol (bind string). To configure exporter, see the
VisConfig.Exporter topic for more information.

Description

Adds a Text Exporter data processing module to the session.

Example

Adding devices to the session:

JavaScript
var session = monitoring.createSession();

// Add Request View visualizer
session.addVisualizer("Request View");

// Add Structure View visualizer with default configuration
session.addVisualizer("Structure View");

// Add PPP View visualizer and configure both Display Filter and Root Protocol
session.addVisualizer("PPP View",{filter: {name:"IO packets only"}, bind: "PPP"});

// Add Raw Exporter and configure it
session.addVisualizer("Raw Exporter",{exporter: {path: "c:\\temp\\raw.bin", overwrite: true,
nocache: false}});

start

TypeScript
start(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Start monitoring session. Make sure at least one device and one data visualizer are successfully added
to the session before calling this method. You may add devices using ISession.addDevice method and
visualizers using ISession.addVisualizer.

Several data sources may support or require configuration using ISession.configureSource method.

An optional Capture Filter may be specified for monitoring session using ISession.setCaptureFilter
method.

Example

Creating, configuring and starting a monitoring session:

JavaScript
var session = monitoring.createSession();
session.addDevice({ serial: "Communications Port (COM1)" });
session.addVisualizer("Data View");
session.start();

Device Monitoring Studio Documentation Advanced Features

210

stop

TypeScript
stop(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Stops a monitoring session. A monitoring session object may not be used after the session has been
stopped. Only requesting the session state is allowed it.

pause

TypeScript
pause(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Pauses a running monitoring session.

resume

TypeScript
resume(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Resumes a paused monitoring session.

setCaptureFilter

Device Monitoring Studio Documentation Advanced Features

211

TypeScript
setCaptureFilter(config: VisConfig.Filter): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

config

Capture Filter configuration parameter.

Description

Configure session's Capture Filter.

Example

Configuring Capture Filter:

JavaScript
// Use predefined capture filter
session.setCaptureFilter({ name: "IO packets only"});

// Use custom capture filter
session.setCaptureFilter({ expression: "usb.urb.BulkOrInterrupt.TransferBufferLength > 500"
});

configureSource

TypeScript
configureSource(config: { playback: Playback.Config }): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

config

Playback configuration object. See Playback.Config for more information.

Description

Configure the Playback data source.

Example

Configure Playback Source:

Device Monitoring Studio Documentation Advanced Features

212

JavaScript
var session = monitoring.createSession();
session.addDevice({ playback: { path: "C:\\temp\\Communications Port (COM1)$140408$1.dmslog8",
stream: 0 } });
session.configureSource({ playback: { scale: Playback.Scale.FourToOne }});

configureSource

TypeScript
configureSource(config: { path: string }): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

config

Full path to the import log file. This configures the Virtual Network Adapter source.

Description

Configure the Import Source.

configureSource

TypeScript
configureSource(config: { serial: Serial.CommunicationsMode; }): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

config

Serial data source communications mode. See Serial.CommunicationsMode for more information.

Description

Configure the Serial data source.

Example

JavaScript
var session = monitoring.createSession();
session.addDevice({ serial: "Communications Port (COM1)" });
session.configureSource({ serial: Serial.CommunicationsMode.PPP});

Device Monitoring Studio Documentation Advanced Features

213

configureSource

TypeScript
configureSource(config: { serial: { mode: Serial.CommunicationsMode; script?: string;
discardEmptyReads?: boolean; terminal?: IDeviceConfig; } }): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

config

Configuration object used to configure custom communication mode or general mode with
specific value for discardEmptyReads (defaults to true). You can also configure the terminal
session by passing the IDeviceConfig interface.

Description

Configure the Serial data source.

configureSource

TypeScript
configureSource(config: { multi: Multi.Color[]; }): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

config

A configuration object with color array to configure Multi-Source data source. May be combined
with other configuration objects if applicable. See Multi.Color for more information.

Description

Configure the Multi-Source data source.

Example

Configure both Serial and Multi-Source:

JavaScript
var session = monitoring.createSession();
session.addDevice({ serial: "Communications Port (COM1)" });
session.addDevice({ serial: "Next connected device" });
session.configureSource({ multi: [{ r: 250, g: 187, b: 0, a: 112 }, { r: 64, g: 64, b: 64, a:
112 }],
 serial: Serial.CommunicationsMode.PPP});

Device Monitoring Studio Documentation Advanced Features

214

saveToLog

TypeScript
saveToLog(config: VisConfig.Recorder): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

config

Logging configuration object. At least the path parameter must be specified and must be the full
path to the resulting log file. Other configuration parameters may be omitted, in which case
defaults will be used.

Description

Start the Save to Log command on the current session object. This method pauses the monitoring
session, asynchronously executes the save to log command and then resumes the session. It can throw
a number of exceptions if given parameters are not valid or the session is currently in invalid state.

Example

TypeScript
async function saveSession(session: ISession, path: string) {
 await session.saveToLog({ path: path });
}

IVisualizer Interface

TypeScript
interface IVisualizer {
 // Properties
 readonly name: string;

 // Methods
 equals(object: IVisualizer): boolean;
 remove(): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IVisualizer Properties

name

Device Monitoring Studio Documentation Advanced Features

215

TypeScript
readonly name: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Holds the data visualizer name.

IVisualizer Methods

equals

TypeScript
equals(object: IVisualizer): boolean;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

object

Reference to a data visualizer object.

Description

Checks whether two references to data visualizer objects point to the same data visualizer. Since
ISession.visualizers property always creates new objects each time the user queries it, it is required to
use this method to test if two references actually reference the same object.

Example

JavaScript
var session = ...;

var vis1 = session.visualizers[0];
var vis2 = session.visualizers[0];

alert(vis1 === vis2); // displays false
alert(vis1.equals(vis2)); // displays true

remove

TypeScript
remove(): void;

Device Monitoring Studio Documentation Advanced Features

216

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Removes this data visualizer from the session.

Serial Namespace

Serial.CommunicationsMode Enumeration

Description

See Serial communications mode topic for more information.

Symbol Value Description
Generic 0 Generic (default) communications mode.
PPP 1 PPP communications mode.
x0D 2 ASCII communications mode (each packet ends with 0D

character).
ModbusRtu 3 MODBUS RTU communications mode.
ModbusAscii 4 MODBUS ASCII communications mode.
Custom 5 Custom communication mode. A TypeScript custom script

with implementation of custom packet splitter must be
provided.

Playback Namespace

Playback.Config Interface

Description

This interface is used to configure Playback data source.

Declaration

TypeScript
interface Config {
 // Properties
 range?: Playback.Range;
 scale?: Playback.Scale;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

Config Properties

Device Monitoring Studio Documentation Advanced Features

217

range

TypeScript
range?: Playback.Range;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Optional playback range configuration.

scale

TypeScript
scale?: Playback.Scale;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Optional playback speed configuration value.

Playback.Range Interface

TypeScript
interface Range {
 // Properties
 from: Date;
 to: Date;
}

C#
public interface Range
{
 // Properties
}

C++
struct Range : IDispatch
{
 // Properties
};

Range Properties

Device Monitoring Studio Documentation Advanced Features

218

from

TypeScript
from: Date;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

JavaScript Date object that specifies the playback starting point.

to

TypeScript
to: Date;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

JavaScript Date object that specifies the playback ending point.

Playback.Scale Enumeration

Description

Playback speed.

Device Monitoring Studio Documentation Advanced Features

219

Symbol Value Description
Stepped 0 Pause monitoring after each packet.
OneToSixteen 1 1/16 of original speed.
OneToEight 2 1/8 of original speed.
OneToFour 3 1/4 of original speed.
OneToTwo 4 1/2 of original speed.
OneToOne 5 Original speed.
TwoToOne 6 Double the original speed.
FourToOne 7 Four times the original speed.
EightToOne 8 Eight times the original speed.
SixteenToOne 9 Sixteen times the original speed.
Continuous 10 Non-stop playback. Do not make pauses between packets.

Session Namespace

Session.State Enumeration

Description

Monitoring session state.

Symbol Value Description
Stopped 0 Monitoring session has not been started yet.
Running 1 Monitoring session is running.
Paused 2 Monitoring session has been paused.
Destroyed 3 Monitoring session has been stopped and destroyed. Do not

use this object.

Multi Namespace

Multi.Color Interface

TypeScript
interface Color {
 // Properties
 r: number;
 g: number;
 b: number;
 a?: number;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

Color Properties

Device Monitoring Studio Documentation Advanced Features

220

r

TypeScript
r: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Red color value.

g

TypeScript
g: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Green color value.

b

TypeScript
b: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Blue color value.

a

TypeScript
a?: number;

Device Monitoring Studio Documentation Advanced Features

221

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Optional alpha (transparency) color value.

VisConfig Namespace

VisConfig.Exporter Interface

Description

This interface is used to configure Raw Exporter and Text Exporter settings.

Declaration

TypeScript
interface Exporter {
 // Properties
 path: string;
 overwrite?: boolean;
 nocache?: boolean;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

Exporter Properties

path

TypeScript
path: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Full path to the destination file.

overwrite

Device Monitoring Studio Documentation Advanced Features

222

TypeScript
overwrite?: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Optional boolean parameter that tells if the file must be overwritten. If omitted, defaults to false .

nocache

TypeScript
nocache?: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Optional boolean parameter that tells if disk cache should not be used. If omitted, defaults to false .

VisConfig.Filter Interface

Description

This interface is used to configure Display Filter or Capture Filter.

Declaration

TypeScript
interface Filter {
 // Properties
 name?: string;
 expression?: string;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

Filter Properties

Device Monitoring Studio Documentation Advanced Features

223

name

TypeScript
name?: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Predefined filter name. If this property is specified, expression property must not be set.

expression

TypeScript
expression?: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Custom filter expression. If this property is specified, name property must not be set.

VisConfig.Recorder Interface

TypeScript
interface VisConfig.Recorder {
 // Properties
 path?: string;
 maxSize?: number;
 maxTimeInSeconds?: number;
 maxFiles?: number;
 overwrite?: boolean;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

VisConfig.Recorder Properties

path

Device Monitoring Studio Documentation Advanced Features

224

TypeScript
path?: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Full path to a log file. If omitted, the default will be used.

maxSize

TypeScript
maxSize?: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Maximum size of a single log part file, in bytes. If not specified or equals zero, no size limit is enforced.

Cannot be used if maxTimeInSeconds is non-zero.

maxTimeInSeconds

TypeScript
maxTimeInSeconds?: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Maximum length of a single log part file, in seconds. If not specified or equals zero, no time limit is
enforced.

Cannot be used if maxSize is non-zero.

maxFiles

Device Monitoring Studio Documentation Advanced Features

225

TypeScript
maxFiles?: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Maximum number of log part files. If zero or omitted, means “infinite”. Ignored if both maxSize and
maxTimeInSeconds are zero.

overwrite

TypeScript
overwrite?: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Set to true if existing log file must be overwritten, false (or do not specify) otherwise. If overwrite
equals false and the destination log file exists, the logging will fail.

Ignored if path is empty.

DataRecording Namespace

DataRecording.IRecordingVisualizer Interface

Description

This interface provides additional methods supported by Data Recording data processing module.

Declaration

TypeScript
interface IRecordingVisualizer extends IVisualizer {

 // Methods
 endStream(): void;
 newStream(): void;
}

C#
// This interface is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

226

C++
// This interface is not available in native environment

IRecordingVisualizer Methods

endStream

TypeScript
endStream(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Ends the current stream and pauses session data recording.

newStream

TypeScript
newStream(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Starts new stream and resumes session data recording.

IVisualizer

DataRecording.IRecordingVisualizer2 Interface

TypeScript
interface IRecordingVisualizer2 extends IVisualizer {
 // Properties
 readonly totalAmount: number;
 paused: boolean;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

Device Monitoring Studio Documentation Advanced Features

227

IRecordingVisualizer2 Properties

totalAmount

TypeScript
readonly totalAmount: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the total number of bytes written to the log file.

paused

TypeScript
paused: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Equals to true if logging is paused, false otherwise. Modify this property to pause/resume logging.

IVisualizer

Exporters Namespace

Exporters.IExporterVisualizer Interface

Description

This interface provides additional methods supported by Raw Exporter and Text Exporter data visualizers.

Declaration

TypeScript
interface IExporterVisualizer extends IVisualizer {

 // Methods
 pause(): void;
 resume(): void;
}

Device Monitoring Studio Documentation Advanced Features

228

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IExporterVisualizer Methods

pause

TypeScript
pause(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Pauses exporting.

resume

TypeScript
resume(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Resumes exporting.

IVisualizer

Serial Terminal Objects

Serial Terminal Object

The Serial Terminal object represents the Serial Terminal module to the running scripts. It exposes the
ITerminalManager interface and may be access through the global object terminal .

User script is able to enumerate the serial terminal sessions created by the user in the Device Monitoring
Studio's user interface using the ITerminalManager.sessions property. It may also create new terminal
session by calling ITerminalManager.createSession method.

Device Monitoring Studio Documentation Advanced Features

229

Device Configuration Object

This object, implementing the IDeviceConfig interface is used to configure serial terminal session
parameters.

Predefined Flow Control Object

Predefined Flow Control Object has three properties: IPredefinedFlowControl.none,
IPredefinedFlowControl.software and IPredefinedFlowControl.hardware that return corresponding flow
control settings objects.

This object is accessible via global object flowControl .

Reference

ITerminalManager Interface

Description

This interface consists of methods and properties supported by the Serial Terminal module.

This interface is exposed by the global object terminal .

Declaration

TypeScript
interface ITerminalManager {
 // Properties
 readonly sessions: ITerminalSession[];

 // Methods
 closeAllSessions(): void;
 createSession(portName: string, deviceConfig?: IDeviceConfig, showWindow?: boolean):
ITerminalSession;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ITerminalManager Properties

sessions

TypeScript
readonly sessions: ITerminalSession[];

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

230

Description

Returns the array of session objects.

Example

Obtain a list of terminal sessions and print their baud rates:

JavaScript
var sessions = terminal.sessions;
for (var i = 0; i < sessions.length; ++i)
 alert(sessions[i].config.baudRate);

ITerminalManager Methods

closeAllSessions

TypeScript
closeAllSessions(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Call this method to stop and close all serial terminal sessions.

createSession

TypeScript
createSession(portName: string, deviceConfig?: IDeviceConfig, showWindow?: boolean):
ITerminalSession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

portName

The name of the device to create a session on.
deviceConfig

Optional device configuration object. If omitted, defaults provided by operating system are used.
showWindow

Pass true to create a visible terminal session, omit or pass false to create invisible session.

Device Monitoring Studio Documentation Advanced Features

231

Return Value

Returns the reference to created empty session object.

Description

Creates new terminal session.

Example

Create new terminal session:

JavaScript
var session = terminal.createSession("COM1", { baudRate: 115200, dataBits: 8, stopBits: 1,
 parity: Terminal.Parity.None, flowControl: flowControl.hardware }, false);

IDeviceConfig

IPredefinedFlowControl Interface

Description

This interface consists of properties supported by the Predefined Flow Control Object.

This interface is exposed by the global object flowControl .

Declaration

TypeScript
interface IPredefinedFlowControl {
 // Properties
 none: IFlowControl;
 software: IFlowControl;
 hardware: IFlowControl;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IPredefinedFlowControl Properties

none

TypeScript
none: IFlowControl;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

232

Description

Returns flow control objects corresponding to “No flow control” setting.

software

TypeScript
software: IFlowControl;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns flow control objects corresponding to “Software flow control” setting.

hardware

TypeScript
hardware: IFlowControl;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns flow control objects corresponding to “Hardware flow control” setting.

IFlowControl Interface

Description

This interface consists of methods and properties supported by the flow control object.

Declaration

TypeScript
interface IFlowControl {
 // Properties
 outXonXoff: boolean;
 inXonXoff: boolean;
 outCtsFlow: boolean;
 outDsrFlow: boolean;
 dsrSensitivity: boolean;
 dtrControl: Terminal.DTRControl;
 rtsControl: Terminal.RTSControl;
}

Device Monitoring Studio Documentation Advanced Features

233

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IFlowControl Properties

outXonXoff

TypeScript
outXonXoff: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Indicates whether XON/XOFF flow control is used during transmission. If this member is true,
transmission stops when the XoffChar character is received and starts again when the XonChar
character is received.

inXonXoff

TypeScript
inXonXoff: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Indicates whether XON/XOFF flow control is used during reception. If this member is true, the XoffChar
character is sent when the input buffer comes within XoffLim bytes of being full, and the XonChar
character is sent when the input buffer comes within XonLim bytes of being empty.

outCtsFlow

TypeScript
outCtsFlow: boolean;

C#
// This property is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

234

C++
// This property is not available in native environment

Description

If this member is true, the CTS (clear-to-send) signal is monitored for output flow control. If this
member is true and CTS is turned off, output is suspended until CTS is sent again.

outDsrFlow

TypeScript
outDsrFlow: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

If this member is true, the DSR (data-set-ready) signal is monitored for output flow control. If this
member is true and DSR is turned off, output is suspended until DSR is sent again.

dsrSensitivity

TypeScript
dsrSensitivity: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

If this member is true, the communications driver is sensitive to the state of the DSR signal. The driver
ignores any bytes received, unless the DSR modem input line is high.

dtrControl

TypeScript
dtrControl: Terminal.DTRControl;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

235

Description

The DTR (data-terminal-ready) flow control.

rtsControl

TypeScript
rtsControl: Terminal.RTSControl;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The RTS (request-to-send) flow control.

IDeviceConfig Interface

Description

This interface contains properties used to configure terminal session object.

Declaration

TypeScript
interface IDeviceConfig {
 // Properties
 baudRate?: number;
 dataBits?: Terminal.DataBits;
 stopBits?: Terminal.StopBits;
 parity?: Terminal.Parity;
 flowControl?: IFlowControl;
 timeouts?: ISerialTimeouts;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IDeviceConfig Properties

baudRate

TypeScript
baudRate?: number;

Device Monitoring Studio Documentation Advanced Features

236

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Terminal session baud rate.

dataBits

TypeScript
dataBits?: Terminal.DataBits;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The number of bits per byte.

stopBits

TypeScript
stopBits?: Terminal.StopBits;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The number of stop bits.

parity

TypeScript
parity?: Terminal.Parity;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

237

Description

Parity mode.

flowControl

TypeScript
flowControl?: IFlowControl;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Flow control mode.

timeouts

TypeScript
timeouts?: ISerialTimeouts;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Session timeout values.

IFlowControl

ISerialTimeouts Interface

Description

This interface is used to set session's timeout values.

A read or write request successfully completes when either the specified number of bytes is transferred
or the requested read or write operation times out. The request returns the STATUS_SUCCESS status code
to indicate that the specified number of bytes was transferred. The request returns the STATUS_TIMEOUT
status code to indicate that the operation timed out.

For a read operation that is Ntotal bytes in length, the maximum amount of time, Tmax, that the serial
port allows for the operation to complete is calculated as follows:

Tmax = Ntotal * readTotalTimeoutMultiplier + readTotalTimeoutConstant

A read request that exceeds this maximum completes when the time-out occurs, and throws a timeout

Device Monitoring Studio Documentation Advanced Features

238

exception.

For a write operation that is Ntotal bytes in length, the maximum amount of time, Tmax, that the serial
port allows for the operation to complete is calculated as follows:

Tmax = Ntotal * writeTotalTimeoutMultiplier + writeTotalTimeoutConstant

A write request that exceeds this maximum completes when the time-out occurs, and throws a timeout
exception.

The maximum time, Tmax, that is allowed for a read or write operation to complete is always measured
from when the serial port starts the requested operation, and not from when the client submits the
request.

If readIntervalTimeout, readTotalTimeoutMultiplier , and readTotalTimeoutConstant are all zero, read
operations never time out. If writeTotalTimeoutMultiplier and writeTotalTimeoutConstant are both zero,
write operations never time out.

If readIntervalTimeout is zero, there is no maximum interval between consecutive bytes in read
operations, and time-outs are based solely on the readTotalTimeoutMultiplier and
readTotalTimeoutConstant members.

If both readTotalTimeoutMultiplier and readTotalTimeoutConstant are zero, and readIntervalTimeout is
less than 0xFFFFFFFF and greater than zero, a read operation times out only if the interval between a
pair of consecutively received bytes exceeds readIntervalTimeout. If these three time-out values are used,
and the serial port's input buffer is empty when a read request is sent to the port, this request never
times out until after the port receives at least one byte of new data.

If readIntervalTimeout is set to 0xFFFFFFFF , and both readTotalTimeoutConstant and
readTotalTimeoutMultiplier are zero, a read request completes immediately with the bytes that have
already been received, even if no bytes have been received.

If both readIntervalTimeout and readTotalTimeoutMultiplier are set to 0xFFFFFFFF , and
readTotalTimeoutConstant is set to a value greater than zero and less than 0xFFFFFFFF , a read request
behaves as follows:

If there are any bytes in the serial port's input buffer, the read request completes immediately with
the bytes that are in the buffer.
If there are no bytes in the input buffer, the serial port waits until a byte arrives, and then
immediately completes the read request with the one byte of data.
If no bytes arrive within the time specified by readTotalTimeoutConstant , the read request times out
throwing a timeout exception.

Declaration

TypeScript
interface ISerialTimeouts {
 // Properties
 readIntervalTimeout?: number;
 `readTotalTimeoutMultiplier`?: number;
 `readTotalTimeoutConstant`?: number;
 writeTotalTimeoutMultiplier?: number;
 writeTotalTimeoutConstant?: number;
}

C#
// This interface is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

239

C++
// This interface is not available in native environment

ISerialTimeouts Properties

readIntervalTimeout

TypeScript
readIntervalTimeout?: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The maximum amount of time, in milliseconds, that is allowed between two consecutive bytes in a read
operation. A read operation that exceeds this maximum times out. This maximum does not apply to
the time interval that precedes the reading of the first byte. A value of zero indicates that interval time-
outs are not used.

readTotalTimeoutMultiplier

TypeScript
`readTotalTimeoutMultiplier`?: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The maximum amount of time, in milliseconds, that is allowed per byte in a read operation. A read
operation that exceeds this maximum times out.

readTotalTimeoutConstant

TypeScript
`readTotalTimeoutConstant`?: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

240

Description

The maximum amount of additional time, in milliseconds, that is allowed per read operation. A read
operation that exceeds this maximum times out.

writeTotalTimeoutMultiplier

TypeScript
writeTotalTimeoutMultiplier?: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The maximum total time, in milliseconds, that is allowed per byte in a write operation. A write
operation that exceeds this maximum times out.

writeTotalTimeoutConstant

TypeScript
writeTotalTimeoutConstant?: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The maximum amount of additional time, in milliseconds, that is allowed per write operation. A write
operation that exceeds this maximum times out.

Serial Terminal Session Object

Serial Terminal Session object represents a running terminal session. It implements the ITerminalSession
interface. A reference to a session object is obtained through the ITerminalManager.sessions property or
ITerminalManager.createSession method.

Configuring Terminal Session

ITerminalManager.createSession receives a session configuration object, which is provided by
IDeviceConfig interface. Session's configuration object may be accessed using the property
ITerminalSession.config. Once the session is started, this property is read-only and any changes made to
the session configuration object's properties are ignored.

You can create a visible terminal session (a session with designated window in UI is provided) or a
hidden session (controlled by the ITerminalSession.visible property).

Device Monitoring Studio Documentation Advanced Features

241

Starting and Stopping Terminal Session

To start a configured session, user script calls the ITerminalSession.start method. To stop, it calls the
ITerminalSession.stop method. When the session is stopped, a serial device is closed and may be used by
any other application.

Sending Data

Terminal Session object provides a number of methods to send data to the serial device:

Method Description
ITerminalSession.send Generic method that is overloaded to send an ASCII

string, a single byte or a byte array.
ITerminalSession.sendAs Send a given integer array, treating its members as 8-bit,

16-bit, 32-bit or 64-bit integers, with either little-endian
or big-endian encoding.

ITerminalSession.sendFile Send the contents of a given file.

All send methods return a promise which must be awaited before trying to send any more data in order
to prevent output buffer overflow. If any error occurs, the send method throws an exception.

Receiving Data

To receive data from serial port, call the ITerminalSession.receive method. It returns a promise which
produces a byte array with available data. Alternatively, a user script may subscribe to the
ITerminalSession.received event.

Events

Terminal Session exposes two events: ITerminalSession.sent and ITerminalSession.received. They are fired
when new data is sent or received from the serial device correspondingly.

Flow Control Emulation

A terminal session provides access to various serial device flow control states. See the corresponding
properties and methods of ITerminalSession interface.

Reference

ITerminalSession Interface

Description

This interface is implemented by the terminal session object. You receive a session object either from
ITerminalManager.sessions array, or through a call to ITerminalManager.createSession method.

Declaration

Device Monitoring Studio Documentation Advanced Features

242

TypeScript
interface ITerminalSession {
 // Properties
 friendlyName: string;
 portName: string;
 config: IDeviceConfig;
 rts: boolean;
 dtr: boolean;
 readonly cts: boolean;
 readonly dsr: boolean;
 readonly dcd: boolean;
 readonly ring: boolean;
 readonly visible: boolean;

 // Methods
 xon(): void;
 xoff(): void;
 breakOn(): void;
 breakOff(): void;
 start(): void;
 stop(): void;
 send(text: string): Promise<void>;
 send(byte: number): Promise<void>;
 send(bytes: number [] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView):
Promise<void>;
 sendAs(sendAs: Terminal.SendAs, data: number [] | Uint8Array | Uint16Array | Uint32Array |
ArrayBuffer | DataView, bigEndian?: boolean): Promise<void>;
 sendFile(fileName: string, byLines: boolean): Promise<void>;
 receive(): Promise<Uint8Array>;

 // Events
 sent(handler: (data: Uint8Array) => void): number;
 sent(eventId: number): void;
 received(handler: (data: Uint8Array) => void): number;
 received(eventId: number): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ITerminalSession Properties

friendlyName

TypeScript
friendlyName: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The session friendly name.

Device Monitoring Studio Documentation Advanced Features

243

portName

TypeScript
portName: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

The property stores the so-called device interface string for a serial device. The device interface is one
of the following:

The string of format “COMn”, where n is the port number. It is internally converted to a string
“\.\COMn”.
The string of format “\.\COMn”, which is equivalent to the previous.
The device interface string of format "\?\acpi#pnp0501#1#{0100fdd7-be5a-4808-91f5-
05002bc60f72}", which uniquely identifies any device in the system. The various tools, including
Device Monitoring Studio itself may be used to obtain device interfaces for installed devices.

config

TypeScript
config: IDeviceConfig;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Get or set a terminal session configuration object. See IDeviceConfig interface for details. Any
configuration object property may be omitted, in which case the system default value is used.

rts

TypeScript
rts: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Device Monitoring Studio Documentation Advanced Features

244

Ready To Send signal state (RTS).

dtr

TypeScript
dtr: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Data Terminal Ready signal state (DTR).

cts

TypeScript
readonly cts: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Clear To Send signal state (CTS). This property is read-only.

dsr

TypeScript
readonly dsr: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Data Set Ready signal state (DSR). This property is read-only.

dcd

Device Monitoring Studio Documentation Advanced Features

245

TypeScript
readonly dcd: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Data Carrier Detect (DCD). This property is read-only.

ring

TypeScript
readonly ring: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Ring Indicator (RI). This property is read-only.

visible

TypeScript
readonly visible: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

true if this session is visible in UI, false otherwise. This property is read-only.

ITerminalSession Methods

xon

TypeScript
xon(): void;

Device Monitoring Studio Documentation Advanced Features

246

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Simulate that XON character received.

xoff

TypeScript
xoff(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Simulate that XOFF character received.

breakOn

TypeScript
breakOn(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Simulate BREAK ON state.

breakOff

TypeScript
breakOff(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Device Monitoring Studio Documentation Advanced Features

247

Description

Simulate BREAK OFF state.

start

TypeScript
start(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Start a terminal session.

stop

TypeScript
stop(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Stop a terminal session. This will cause the opened handle to a serial device to be closed.

send

TypeScript
send(text: string): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

text

String to be sent to the terminal session.

Description

Device Monitoring Studio Documentation Advanced Features

248

Send data to a terminal session. A given string is converted to ANSI and sent to the port.

send

TypeScript
send(byte: number): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

byte

A single byte to be sent to the terminal session.

Description

Send a given byte to a terminal session.

send

TypeScript
send(bytes: number [] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView):
Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

bytes

A JavaScript array of integer numbers to be sent to the terminal session.

Description

Send a passed byte array to a terminal session.

sendAs

TypeScript
sendAs(sendAs: Terminal.SendAs, data: number [] | Uint8Array | Uint16Array | Uint32Array |
ArrayBuffer | DataView, bigEndian?: boolean): Promise<void>;

C#
// This method is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

249

C++
// This method is not available in native environment

Parameters

sendAs

@split A constant that tells how to interpret numbers in an array. See Terminal.SendAs for more
information.

data

A JavaScript array of integer numbers to send to the port. Numbers are interpreted according to
sendAs parameter.

bigEndian

An optional boolean parameter, which if passed and equals to true tells terminal session to use
big-endian encoding for integers. Ignored for when sendAs equals Terminal.SendAs.Bytes . Equals
false if omitted.

Description

Send a number array to terminal session. First parameter tells how to interpret numbers in an array and
the second parameter is a Javascript array of integer numbers.

Example

Send data to the terminal session

JavaScript
await session.sendAs(Terminal.SendAs.Words, [0x4154, 0x440d], true);

sendFile

TypeScript
sendFile(fileName: string, byLines: boolean): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

fileName

Full path to a file to send. Specify empty string to open dialog box, that will allow you to visually
select file using system Open File dialog.

byLines

If this parameter is true , the file is analyzed and split into the lines. The lines are then sent to the
serial terminal session. If this parameter is false , the file is sent to the session byte by byte.

Description

Send contents of a file to the terminal session.

Device Monitoring Studio Documentation Advanced Features

250

receive

TypeScript
receive(): Promise<Uint8Array>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Return Value

A promise object that produces a byte array when ready.

Description

Receive (read) data from the terminal session.

Example

Receive data from the terminal session

JavaScript
async function check(session)
{
 await session.send("AT\n");
 var response = await session.receive();
}

ITerminalSession Events

sent

TypeScript
sent(handler: (data: Uint8Array) => void): number;
sent(eventId: number): void;

Parameters

data

Sent bytes in JavaScript array.

Description

This event is fired when new data is sent to the serial device.

First overload is used to bind new handler to the event. It returns a numeric eventId which then may
be passed to second overload to unbind a handler.

Example

Sample sent data handler for a text protocol.

Device Monitoring Studio Documentation Advanced Features

251

var user_session = terminal.sessions[0];
var eventId = user_session.sent(function(data)
{
 alert(data.length + " bytes sent to " + user_session.FriendlyName + ".\n");
});

// ...
// Unbind event handler when not needed anymore
user_session.sent(eventId);

received

TypeScript
received(handler: (data: Uint8Array) => void): number;
received(eventId: number): void;

Parameters

data

Received bytes in JavaScript array.

Description

This event is fired when new data is received from the serial device.

First overload is used to bind new handler to the event. It returns a numeric eventId which then may
be passed to second overload to unbind a handler.

Example

Sample received data handler for a text protocol.

JavaScript
var user_session = terminal.sessions[0];
var eventId = user_session.received(function(data)
{
 alert(data.length + " bytes received to " + user_session.FriendlyName + ".\n");
});

// ...
// Unbind event handler when not needed anymore
user_session.received(eventId);

IDeviceConfig

Terminal Namespace

Terminal.DataBits Enumeration

Description

Allowed data bits constants.

Device Monitoring Studio Documentation Advanced Features

252

Symbol Value Description
_5 5 5 bits data length.
_6 6 6 bits data length.
_7 7 7 bits data length.
_8 8 8 bits data length.

Terminal.Parity Enumeration

Description

Allowed parity constants.

Symbol Value Description
None 0 No parity.
Odd 1 Odd parity.
Even 2 Even parity.
Mark 3 Mark parity.
Space 4 Space parity.

Terminal.SendAs Enumeration

Description

Allowed array types for ITerminalSession.sendAs method.

Symbol Value Description
Bytes 0 Treat array members as unsigned 8-bit integers.
Words 1 Treat array members as unsigned 16-bit integers.
DoubleWords 2 Treat array members as unsigned 32-bit integers.

Terminal.StopBits Enumeration

Description

Allowed stop bits constants.

Symbol Value Description
_1 0 1 stop bit.
_1_5 1 1.5 stop bits.
_2 2 2 stop bits.

Terminal.DTRControl Enumeration

Description

Supported DTR (data-terminal-ready) control modes.

Device Monitoring Studio Documentation Advanced Features

253

Symbol Value Description
Disabled 0 Disables the DTR line when the device is opened and leaves it

disabled.
Enabled 1 Enables the DTR line when the device is opened and leaves it on.
Handshake 2 Enables DTR handshaking.

Terminal.RTSControl Enumeration

Description

Supported RTS (request-to-send) control modes.

Symbol Value Description
Disabled 0 Disables the RTS line when the device is opened and leaves it

disabled.
Enabled 1 Enables the RTS line when the device is opened and leaves it on.
Handshake 2 Enables RTS handshaking. The driver raises the RTS line when

the “type-ahead” (input) buffer is less than one-half full and
lowers the RTS line when the buffer is more than three-quarters
full.

Toggle 3 Specifies that the RTS line will be high if bytes are available for
transmission. After all buffered bytes have been sent, the RTS
line will be low.

Network Manager Object

Network Manager object is used to create TCP sessions, UDP sessions and TCP Listeners. TCP sessions
may then be used with MODBUS Send module to build and send MODBUS TCP packets to destination
endpoints.

Network Manager is exposed by global object networkManager and implements INetworkManager
interface. Use this object to enumerate all running sessions (INetworkManager.getSessions), and create
new sessions and listeners:

TCP sessions (INetworkManager.createTcpSession).
UDP sessions (INetworkManager.createUdpSession).
TCP Listener objects (INetworkManager.createTcpListener).

Reference

INetworkManager Interface

TypeScript
interface INetworkManager {

 // Methods
 createTcpSession(ipAddress: string, port: number): ITcpSession;
 createUdpSession(): IUdpSession;
 createTcpListener(host: string, port: number): Promise<ITcpListener>;
 getSessions(type: Network.SessionType): INetworkSession[];
}

C#
// This interface is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

254

C++
// This interface is not available in native environment

INetworkManager Methods

createTcpSession

TypeScript
createTcpSession(ipAddress: string, port: number): ITcpSession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

ipAddress

A destination address. This may be either IPv4 address, IPv6 address or DNS name.
port

Destination port number.

Return Value

Returns the reference to created session object.

Description

Creates new TCP session.

Example

Create new TCP session:

JavaScript
var session = networkManager.createTcpSession("192.168.33.50", 502);

createUdpSession

TypeScript
createUdpSession(): IUdpSession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Return Value

Returns the reference to created session object.

Device Monitoring Studio Documentation Advanced Features

255

Description

Creates new UDP session.

Example

Create new UDP session:

JavaScript
var session = networkManager.createUdpSession();

createTcpListener

TypeScript
createTcpListener(host: string, port: number): Promise<ITcpListener>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

host

A local host name. Used to open a listening socket.
port

Local port number.

Return Value

Returns a promise that yields a reference to the prepared listener object.

Description

Creates new TCP listener object.

Example

Listen for a new TCP connection

JavaScript
async function listen() {
 var l = await networkManager.createTcpListener("localhost", 80);
 var socket = await l.listen();
}

getSessions

TypeScript
getSessions(type: Network.SessionType): INetworkSession[];

C#
// This method is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

256

C++
// This method is not available in native environment

Parameters

type

Type of sessions to return.

Return Value

Array of requested session objects.

Description

Retrieve the array of TCP or UDP (or both) session objects.

Example

Obtain a list of TCP sessions.

JavaScript
var tcpSessions = networkManager.getSessions(Network.SessionType.Tcp);

Network Namespace

Network.SessionType Enumeration

Description

A constant that controls the type of sessions the INetworkManager.getSessions method returns.

Symbol Value Description
Tcp 1 Return only TCP sessions.
Udp 2 Return only UDP sessions.
All 3 Return both TCP and UDP sessions.

INetworkSession Interface

TypeScript
interface INetworkSession {

 // Methods
 connect(hostName: string, port: number): Promise<void>;
 stop(): void;
 send(text: string): void;
 send(byte: number): void;
 send(bytes: number [] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView):
void;
 receive(): Promise<Uint8Array>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

Device Monitoring Studio Documentation Advanced Features

257

INetworkSession Methods

connect

TypeScript
connect(hostName: string, port: number): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

hostName

Host name. This may be host domain name, IP address or other name that can be resolved.
port

Port number.

Description

Starts a connect operation on a session. Returns a promise that can be awaited. A promise object is
completed when the connection either succeeds or fails.

stop

TypeScript
stop(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Stop the running TCP session.

send

TypeScript
send(text: string): void;

C#
// This method is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

258

C++
// This method is not available in native environment

Parameters

text

String to be sent to the terminal session.

Description

Send data to a TCP session. Convert a given string to ANSI and sends it to the session.

send

TypeScript
send(byte: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

byte

A single byte to be sent to the terminal session.

Description

Send a given byte to a TCP session.

send

TypeScript
send(bytes: number [] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView):
void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

bytes

A JavaScript array of integer numbers to be sent to the terminal session. Each number is treated as
an unsigned 8-bit value.

Description

Send given byte array to a TCP session.

Device Monitoring Studio Documentation Advanced Features

259

Example

Send data to the terminal session

JavaScript
// Send ASCII string to the TCP endpoint
session.send("AT\n");

// Send a single byte to the TCP endpoint
session.send(0x0d);

// Send a byte array to the TCP endpoint
session.send([0x41, 0x54, 0x0d]);

receive

TypeScript
receive(): Promise<Uint8Array>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Starts a receive operation on a network session. This method returns a promise that yields a byte array
when completed.

Example

Receive data from the network

JavaScript
async function read(session: ITcpSession)
{
 while (true)
 {
 try
 {
 var data = await session.receive();
 // process data (Uint8Array)
 } catch(e)
 {
 // network error occurred
 }
 }
}

TCP Session Object

TCP Session object represents a running TCP session. It implements the ITcpSession interface. A
reference to a session object is obtained through the call to INetworkManager.createTcpSession
method.

Asynchronous API

TCP Session API is asynchronous. All methods (except ITcpSession.stop) return promise objects. This

Device Monitoring Studio Documentation Advanced Features

260

means that they complete immediately and the caller needs to schedule a continuation to get the result
of the operation. This can be done using the call to Promise.then or using ES2017 await keyword.

Connecting a TCP Session

Before the session can be used for data transfer, it must first be connected to remote endpoint by a call
to ITcpSession.connect method. This method returns a promise that is completed when the connection
succeeds or fails.

Sending and Receiving Data

TCP Session object implements the ITcpSession.send method with three overloads that allows the user
script to send the data to the TCP session. Use ITcpSession.receive method to read data from a TCP
session.

ITcpSession Interface

TypeScript
interface ITcpSession extends INetworkSession {
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

INetworkSession

UDP Session Object

UDP Session object represents a running UDP session. It implements the IUdpSession interface. A
reference to a session object is obtained through the INetworkManager.createUdpSession method.

Asynchronous API

UDP Session API is asynchronous. All methods (except IUdpSession.stop) return promise objects. This
means that they complete immediately and the caller needs to schedule a continuation to get the result
of the operation. This can be done using the call to Promise.then or using ES2017 await keyword.

Starting and Stopping UDP Session

Client UDP session should be started with a call to IUdpSession.connect method. It returns a promise
that is completed as soon as connection is established. Server UDP session should be started with a call
to IUdpSession.bind method.

To stop a session, call IUdpSession.stop method. When UDP session object is collected by garbage
collector, the session is closed automatically.

Sending and Receiving Data

UDP Session object implements the IUdpSession.send method with three overloads that allows the user
script to send the data to the UDP session. Method returns promise that completed as soon as data
sending is finished.

Device Monitoring Studio Documentation Advanced Features

261

To receive data from a session, call IUdpSession.receive method. It returns a promise object
(Promise<Uint8Array>).

IUdpSession Interface

TypeScript
interface IUdpSession extends INetworkSession {

 // Methods
 bind(hostName: string, port: number): Promise<void>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IUdpSession Methods

bind

TypeScript
bind(hostName: string, port: number): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

hostName

Host name. This may be host domain name, IP address or other name that can be resolved.
port

Port number.

Description

Starts a bind operation on UDP session. Returns a promise that can be awaited.

INetworkSession

TCP Listener Object

TCP Listener object represents a listening TCP socket and implements the ITcpListener interface. You
create an instance of a listener object by calling the INetworkManager.createTcpListener method. To
start listening on a socket, call the ITcpListener.listen method. The method returns a promise that, when
ready, provides the actual TCP session to use to communicate with a connected party.

ITcpListener Interface

Device Monitoring Studio Documentation Advanced Features

262

TypeScript
interface ITcpListener {

 // Methods
 listen(): Promise<ITcpSession>;
 close(): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ITcpListener Methods

listen

TypeScript
listen(): Promise<ITcpSession>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Return Value

Returns a promise. When the promise becomes ready, it produces a reference to TCP Session object
you may use to communicate with connected party.

Description

Start listening on a configured endpoint. This method completes immediately, returning a promise
object. When this promise becomes ready, it yields a reference to new TCP session object, which
represents the connected party.

Example

Listen for a new TCP connection

JavaScript
async function listen() {
 var l = await networkManager.createTcpListener("localhost", 80);
 var socket = await l.listen();
}

close

TypeScript
close(): void;

Device Monitoring Studio Documentation Advanced Features

263

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Closes the listener object. This object may not be used after the close operation.

ITcpSession

MODBUS Manager Object

The MODBUS Manager object represents the MODBUS Send Module to the running scripts. It is
available as a global object modbus and implements the IModbusManager interface. The only method of
this interface, IModbusManager.createBuilder is used to create a MODBUS Builder Object.

IModbusManager Interface

TypeScript
interface IModbusManager {

 // Methods
 createBuilder(address: number, asciiMode: boolean): IModbusBuilder;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IModbusManager Methods

createBuilder

TypeScript
createBuilder(address: number, asciiMode: boolean): IModbusBuilder;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

address

MODBUS destination address.
asciiMode

True if ASCII protocol is required, false for RTU.

Device Monitoring Studio Documentation Advanced Features

264

Description

This method creates new MODBUS Builder Object. It accepts an address and protocol mode. The
created builder object will internally store these values and will then use them in construction of
MODBUS requests and responses.

MODBUS Builder Object

MODBUS Builder object is used to construct MODBUS request and response messages. This object
exposes a number of helper methods (via IModbusBuilder interface) that should be called to parse
passed arguments and build message's byte array. The resulting byte array may later be used in a call to
ITerminalSession.send, ITcpSession.send or IUdpSession.send methods.

Creating MODBUS Builder Object

To create a MODBUS Builder object, call the IModbusManager.createBuilder method.

Reference

IModbusBuilder Interface

Description

This interface is implemented by the MODBUS Builder Object. You create an instance of this object by
calling the IModbusManager.createBuilder method.

Please consult the MODBUS protocol documentation for term definitions.

Declaration

Device Monitoring Studio Documentation Advanced Features

265

TypeScript
interface IModbusBuilder {

 // Methods
 error(functionID: number, exceptionCode: number): Uint8Array;
 requestDiagnostics(subfunction: number, data: number): Uint8Array;
 requestGetCommEventCounter(): Uint8Array;
 requestGetCommEventLog(): Uint8Array;
 requestMaskWriteRegister(referenceAddress: number, andMask: number, orMask: number):
Uint8Array;
 requestReadCoils(startingAddress: number, numberOfCoils: number): Uint8Array;
 requestReadDiscreteInputs(startingAddress: number, numberOfInputs: number): Uint8Array;
 requestReadExceptionStatus(): Uint8Array;
 requestReadFIFOQueue(fifoPointerAddress: number): Uint8Array;
 requestReadFileRecord(requests: ReadFileRequest[]): Uint8Array;
 requestReadHoldingRegisters(startingAddress: number, numberOfRegisters: number): Uint8Array;
 requestReadInputRegisters(startingAddress: number, numberOfRegisters: number): Uint8Array;
 requestReadWriteMultipleRegisters(readStartingAddress: number,
 numberToRead: number,
 writeStartingAddress: number,
 data: number [] | Uint16Array): Uint8Array;
 requestReportSlaveID(): Uint8Array;
 requestUserFunction(functionID: number, data: number[] | Uint8Array): Uint8Array;
 requestWriteFileRecord(requests: FileRecord[]): Uint8Array;
 requestWriteMultipleCoils(startingAddress: number, data: boolean[]): Uint8Array;
 requestWriteMultipleRegisters(startingAddress: number, data: number[] | Uint16Array):
Uint8Array;
 requestWriteSingleCoil(outputAddress: number, outputValue: number): Uint8Array;
 requestWriteSingleRegister(registerAddress: number, registerValue: number): Uint8Array;
 responseDiagnostics(subFunction: number, data: number [] | Uint8Array): Uint8Array;
 responseGetCommEventCounter(status: number, eventCount: number): Uint8Array;
 responseGetCommEventLog(status: number, events: number [] | Uint8Array): Uint8Array;
 responseMaskWriteRegister(referenceAddress: number, andMask: number, orMask: number):
Uint8Array;
 responseReadCoilStatus(items: number [] | Uint8Array): Uint8Array;
 responseReadDiscreteInputs(items: number [] | Uint8Array): Uint8Array;
 responseReadExceptionStatus(outputData: number): Uint8Array;
 responseReadFIFOQueue(registers: number [] | Uint16Array): Uint8Array;
 responseReadFileRecord(requests: ReadFileResponse[]): Uint8Array;
 responseReadHoldingRegisters(registers: number [] | Uint16Array): Uint8Array;
 responseReadInputRegisters(registers: number [] | Uint16Array): Uint8Array;
 responseReadWriteRegisters(registers: number [] | Uint16Array): Uint8Array;
 responseReportSlaveID(runIndicatorStatus: number,
 slaveIds: number [] | Uint8Array,
 data: number [] | Uint8Array): Uint8Array;
 responseWriteFileRecord(requests: FileRecord[]): Uint8Array;
 responseWriteMultipleCoils(startingAddress: number, quantityOfOutputs: number): Uint8Array;
 responseWriteMultipleRegisters(startingAddress: number, quantityOfRegisters: number):
Uint8Array;
 responseWriteSingleCoil(outputAddress: number, outputValue: number): Uint8Array;
 responseWriteSingleRegister(outRegisterAddress: number, outValue: number): Uint8Array;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IModbusBuilder Methods

error

TypeScript
error(functionID: number, exceptionCode: number): Uint8Array;

Device Monitoring Studio Documentation Advanced Features

266

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

functionID

Function code (ID). The function code is a number from 0 to 127. Internally, the MODBUS Send
module appends 0x80 to it.

exceptionCode

Exception code (see MODBUS protocol documentation).

Description

Construct the error response.

Example

JavaScript
var message = builder.error(1, 20);

requestDiagnostics

TypeScript
requestDiagnostics(subfunction: number, data: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

subfunction

Diagnostics sub-function code (0 to 65535). Please refer to the protocol documentation for a list
of predefined sub-function codes.

data

Data to be returned (looped back) in the device response. Returned data should match the
original for the request to be considered successful.

Description

Send the Diagnostics (see MODBUS protocol documentation) request to the selected device.

Example

JavaScript
var message = builder.requestDiagnostics(1, 65535);

Device Monitoring Studio Documentation Advanced Features

267

requestGetCommEventCounter

TypeScript
requestGetCommEventCounter(): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Construct the Get Comm Event Counter request.

Example

JavaScript
var message = builder.requestGetCommEventCounter();

requestGetCommEventLog

TypeScript
requestGetCommEventLog(): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Construct the Get Comm Event Log request.

requestMaskWriteRegister

TypeScript
requestMaskWriteRegister(referenceAddress: number, andMask: number, orMask: number):
Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

referenceAddress

Reference address. It can be a number from 0 to 65535.

Device Monitoring Studio Documentation Advanced Features

268

andMask

And Mask is used for bitwise AND operation on the selected register address. It can be a number
from 0 to 65535.

orMask

And Mask is used for bitwise OR operation on the selected register address. It can be a number
from 0 to 65535.

Description

Construct the Mask Write Register request.

requestReadCoils

TypeScript
requestReadCoils(startingAddress: number, numberOfCoils: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

startingAddress

First coil address.
numberOfCoils

Total number of coils to read. This parameter can take values from 1 to 65535 (0x0001 to 0xFFFF).
However, the documentation allows only 1 to 2000 (0x0001 to 0x07D0) values to be used (see the
MODBUS protocol documentation).

Description

Construct the Read Coils request.

requestReadDiscreteInputs

TypeScript
requestReadDiscreteInputs(startingAddress: number, numberOfInputs: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

startingAddress

First discrete input address. In some implementations device interprets this value as an offset - this
value is added to default MODBUS base discrete input address (see MODBUS protocol

Device Monitoring Studio Documentation Advanced Features

269

documentation) 10000. Specify the 0 value for this parameter to read discrete input with 10000
address.

numberOfInputs

Total count of discrete inputs to be read. This parameter can take values from 1 to 65535 (0x0001
to 0xFFFF). However, the documentation allows only 1 to 2000 (0x0001 to 0x07D0) values to be
used (see the MODBUS protocol documentation).

Description

Construct the Read Discrete Inputs request.

requestReadExceptionStatus

TypeScript
requestReadExceptionStatus(): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Construct the Read Exception Status request.

requestReadFIFOQueue

TypeScript
requestReadFIFOQueue(fifoPointerAddress: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

fifoPointerAddress

Queue pointer address. This parameter can take values from 0 to 65535 (0x0000 to 0xFFFF).

Description

Construct the Read FIFO Queue request.

requestReadFileRecord

TypeScript
requestReadFileRecord(requests: ReadFileRequest[]): Uint8Array;

Device Monitoring Studio Documentation Advanced Features

270

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

requests

Array of read file requests.

Description

Construct the Read File Record request.

Example

JavaScript
var message = builder.requestReadFileRecord([
 { referenceType: 1, fileNumber: 10, recordNumber: 20, registerLength: 30 }
]); // 1 request with refernce type 1 and 10 as file number value

var message = builder.requestReadFileRecord([
 { referenceType: 1, fileNumber: 10, recordNumber: 20, registerLength: 30 },
 { referenceType: 1, fileNumber: 11, recordNumber: 21, registerLength: 31 }
]); // 2 requests: first with 20 as the Record Number value; second with 21 as the Record
Number value

requestReadHoldingRegisters

TypeScript
requestReadHoldingRegisters(startingAddress: number, numberOfRegisters: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

startingAddress

First register address (0 to 65535). In some implementations device interprets this value as an
offset - this value is added to default MODBUS base register address (see Modbus protocol
documentation) 40000. Specify the 0 value for this parameter to write registers starting from
40000 address.

numberOfRegisters

Total count of registers to read. This parameter can take values from 1 to 65535 (0x0001 to
0xFFFF). However, the documentation allows only 1 to 125 (0x0001 to 0x007D) values to be used
(see the MODBUS protocol documentation).

Description

Construct the Read Holding Registers request.

Device Monitoring Studio Documentation Advanced Features

271

requestReadInputRegisters

TypeScript
requestReadInputRegisters(startingAddress: number, numberOfRegisters: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

startingAddress

First register address (0 to 65535). In some implementations device interprets this value as an
offset - this value is added to default MODBUS base register address (see MODBUS protocol
documentation) 30000. Specify the 0 value for this parameter to write registers starting from
30000 address.

numberOfRegisters

Total number of registers to read. This parameter can take values from 1 to 65535 (0x0001 to
0xFFFF). However, the documentation allows only 1 to 125 (0x0001 to 0x007D) values to be used
(see the MODBUS protocol documentation).

Description

Construct the Read Input Registers request.

requestReadWriteMultipleRegisters

TypeScript
requestReadWriteMultipleRegisters(readStartingAddress: number,
 numberToRead: number,
 writeStartingAddress: number,
 data: number [] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

readStartingAddress

Read starting address (8-bit).
numberToRead

Number of values to read (8-bit).
writeStartingAddress

Write starting address (8-bit).
data

Data to write. Treated as unsigned 16-bit integers.

Device Monitoring Studio Documentation Advanced Features

272

Description

Construct the Read Write Multiple Registers request.

The function throws an exception if you specify incorrect values for the data parameter. The function
also throws an exception if there is too many or too little values, as well as if the total length of the
packet exceeds 255 bytes.

Example

JavaScript
var message1 = builder.requestReadWriteMultipleRegisters(1, 2, 30, [32500]); // only one
value is written
var message2 = builder.requestReadWriteMultipleRegisters(1, 2, 30, [32500, 32000, 65535,
65535, 65535]); // 5 values are written

requestReportSlaveID

TypeScript
requestReportSlaveID(): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Construct the Report SlaveID request.

requestUserFunction

TypeScript
requestUserFunction(functionID: number, data: number[] | Uint8Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

functionID

8-bit function ID.
data

Integer array of function parameters. Each item is treated as 8-bit unsigned value.

Description

Construct the user-defined message to the device.

Example

Device Monitoring Studio Documentation Advanced Features

273

JavaScript
var message = builder.requestUserFunction(15, [1, 2, 3, 4, 5, 6, 7]); // User function 15
with 7 parameters

requestWriteFileRecord

TypeScript
requestWriteFileRecord(requests: FileRecord[]): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

requests

An array of file records. The function throws an exception if you specify incorrect values for the
parameter. The function also throws an exception if there is too many values, as well as if the total
length of the packet exceeds 255 bytes.

Description

Construct the Write File Record request.

Example

JavaScript
var message = builder.requestWriteFileRecord([
 { referencyType: 1, fileNumber: 10, recordNumber: 20, records: [255] },
 { referencyType: 1, fileNumber: 10, recordNumber: 20, records: [255, 255] },
 { referencyType: 1, fileNumber: 11, recordNumber: 21, records: [127, 127, 127] }
]);

requestWriteMultipleCoils

TypeScript
requestWriteMultipleCoils(startingAddress: number, data: boolean[]): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

startingAddress

Starting address (number from 0 to 65535).
data

An array of COIL values.

Device Monitoring Studio Documentation Advanced Features

274

Description

Construct the Write Multiple Coils request.

requestWriteMultipleRegisters

TypeScript
requestWriteMultipleRegisters(startingAddress: number, data: number[] | Uint16Array):
Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

startingAddress

Starting address (number from 0 to 65535).
data

An array of register values. Each value must be between 0 and 65535.

Description

Construct the Write Multiple Registers request.

requestWriteSingleCoil

TypeScript
requestWriteSingleCoil(outputAddress: number, outputValue: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

outputAddress

16-bit coil address (0 to 65535).
outputValue

Output value is used to set the coil state to FALSE/TRUE values. Only 0 to 65535 (0x0000 to
0xFFFF) values are accepted. However, the documentation allows only 0 and 65280 (0x0000 and
0xFF00) values to be used (see the MODBUS protocol documentation) to switch the coil state to
FALSE/TRUE.

Description

Construct the Write Single Coil request .

Device Monitoring Studio Documentation Advanced Features

275

Example

JavaScript
var m1 = builder.requestWriteSingleCoil(0, 65280); // set the 1 (TRUE) value to coil 0
var m2 = builder.requestWriteSingleCoil(1, 0); // set the 0 (FALSE) value to coil 1
var m3 = builder.requestWriteSingleCoil(2, 15); // WARNING: the value 15 is undefined by
standard.
// coil #2 will have unknown value now (FALSE or TRUE)

requestWriteSingleRegister

TypeScript
requestWriteSingleRegister(registerAddress: number, registerValue: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

registerAddress

Register address (0 to 65535). In some implementations device interprets this value as an offset —
this value is added to default MODBUS base register address (see MODBUS protocol
documentation) 40000. Specify the 0 value for this parameter to write register with 40000 address.

registerValue

Value to be set. The parameter can take values from 0 to 65535 (0x0000 to 0xFFFF).

Description

Construct the Write Single Register request.

responseDiagnostics

TypeScript
responseDiagnostics(subFunction: number, data: number [] | Uint8Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

subFunction

The sub-function index. It can be a number from 0 (0x0000) to 65535 (0xFFFF).
data

Byte array with diagnostics response data.

Description

Device Monitoring Studio Documentation Advanced Features

276

Send the Diagnostics response.

The function throws an exception if you specify incorrect values for the data parameter. The function
also throws an exception if the total length of the packet exceeds 255 bytes.

responseGetCommEventCounter

TypeScript
responseGetCommEventCounter(status: number, eventCount: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

status

Status value. It can be a number from 0 (0x0000) to 65535 (0xFFFF).
eventCount

Event count value. It can be a number from 0 (0x0000) to 65535 (0xFFFF).

Description

Construct the Get Comm Event Counter response.

responseGetCommEventLog

TypeScript
responseGetCommEventLog(status: number, events: number [] | Uint8Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

status

Status value. It can be a number from 0 (0x0000) to 65535 (0xFFFF). messageCount: numberEvent
count value. It can be a number from 0 (0x0000) to 65535 (0xFFFF).

events

Integer array of 8-bit event values.

Description

Construct the Get Comm Event Log response.

Device Monitoring Studio Documentation Advanced Features

277

responseMaskWriteRegister

TypeScript
responseMaskWriteRegister(referenceAddress: number, andMask: number, orMask: number):
Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

referenceAddress

Reference address. It can be a number from 0 to 65535.
andMask

And Mask is used for bitwise AND operation on the selected register address. It can be a number
from 0 to 65535.

orMask

And Mask is used for bitwise OR operation on the selected register address. It can be a number
from 0 to 65535.

Description

Construct the Mask Write Register response.

responseReadCoilStatus

TypeScript
responseReadCoilStatus(items: number [] | Uint8Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

items

Integer array of 8-bit coil values.

Description

Construct the Read Coil Status response.

responseReadDiscreteInputs

Device Monitoring Studio Documentation Advanced Features

278

TypeScript
responseReadDiscreteInputs(items: number [] | Uint8Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

items

Integer array of 8-bit coils values.

Description

Construct the Read Discrete Inputs response.

responseReadExceptionStatus

TypeScript
responseReadExceptionStatus(outputData: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

outputData

The output value. It can be a number from 0 (0x00) to 255 (0xFF).

Description

Construct the Read Exception Status response.

responseReadFIFOQueue

TypeScript
responseReadFIFOQueue(registers: number [] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

registers

Integer array of 16-bit register values.

Device Monitoring Studio Documentation Advanced Features

279

Description

Send the Read FIFO Queue response.

The function throws an exception if you specify incorrect values for the registers parameter. The
function also throws an exception if the total length of the packet exceeds 255 bytes.

responseReadFileRecord

TypeScript
responseReadFileRecord(requests: ReadFileResponse[]): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

requests

An array of file response records. The function throws an exception if you specify incorrect values
for the parameter. The function also throws an exception if there are too many values, as well as if
the total length of the packet exceeds 255 bytes.

Description

Construct the Read File Record response.

Example

JavaScript
var message = builder.responseReadFileRecord([
 { referenceType: 6, data: [255] },
 { referenceType: 6, data: [65535, 65535] },
 { referenceType: 6, data: [120] }
]);

responseReadHoldingRegisters

TypeScript
responseReadHoldingRegisters(registers: number [] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

registers

Register values array. Each item is treated as unsigned 16-bit integer.

Device Monitoring Studio Documentation Advanced Features

280

Description

Construct the Read Holding Registers response.

The function throws an exception if you specify incorrect values for the registers parameter. The
function also throws an exception if the total length of the packet exceeds 255 bytes.

responseReadInputRegisters

TypeScript
responseReadInputRegisters(registers: number [] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

registers

Array with register values. Each value is treated as unsigned 16-bit integer.

Description

Construct the Read Input Registers response.

The function throws an exception if you specify incorrect values for the registers parameter. The
function also throws an exception if the total length of the packet exceeds 255 bytes.

responseReadWriteRegisters

TypeScript
responseReadWriteRegisters(registers: number [] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

registers

Array of 16-bit register values.

Description

Construct the Read Write Registers response.

responseReportSlaveID

Device Monitoring Studio Documentation Advanced Features

281

TypeScript
responseReportSlaveID(runIndicatorStatus: number,
 slaveIds: number [] | Uint8Array,
 data: number [] | Uint8Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

runIndicatorStatus

RunIndicatorStatus value. It can be a value from 0 to 255.
slaveIds

An array of slave identifiers.
data

Additional data to send.

Description

Construct the Report SlaveID response.

The function throws an exception if you specify incorrect values for the requests parameter. The
function also throws an exception if there is too many or too little values, as well as if the total length
of the packet exceeds 255 bytes.

Example

JavaScript
// send 1 byte (255 in this example) as SlaveId field data
// and 2 bytes (255,100 in this example) as AdditionalData field data
// RunIndicatorStatus field is 0
var message = builder.responseReportSlaveID(0, [255], [255, 100]);

responseWriteFileRecord

TypeScript
responseWriteFileRecord(requests: FileRecord[]): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

requests

An array of file records. The function throws an exception if you specify incorrect values for the
parameter. The function also throws an exception if there is too many values, as well as if the total
length of the packet exceeds 255 bytes.

Device Monitoring Studio Documentation Advanced Features

282

Description

Construct the Write File Record response.

Example

JavaScript
var message = builder.responseWriteFileRecord([
 { referenceType: 1, fileNumber: 2, recordNumber: 1, records: [65535] }, // first request
(with 1 record data value)
 { referenceType: 1, fileNumber: 40000, recordNumber: 2, records: [65535, 65535, 65535] },
// second request (with 3 record data values)
 { referenceType: 1, fileNumber: 2, recordNumber: 3, records: [120] } // third request
(with 1 record data value)
]);

responseWriteMultipleCoils

TypeScript
responseWriteMultipleCoils(startingAddress: number, quantityOfOutputs: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

startingAddress

Starting address value. It can be a number from 0 (0x0000) to 65535 (0xFFFF).
quantityOfOutputs

Outputs count value. It can be a number from 0 (0x0001) to 1968 (0x07B0).

Description

Construct the Write Multiple Coils response.

responseWriteMultipleRegisters

TypeScript
responseWriteMultipleRegisters(startingAddress: number, quantityOfRegisters: number):
Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

startingAddress

Starting address value. It can be a number from 0 (0x0000) to 65535 (0xFFFF).

Device Monitoring Studio Documentation Advanced Features

283

quantityOfRegisters

Event count value. It can be a number from 1 (0x0001) to 123 (0x007B).

Description

Construct the Write Multiple Registers response.

responseWriteSingleCoil

TypeScript
responseWriteSingleCoil(outputAddress: number, outputValue: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

outputAddress

The address of a coil. It can be a number from 0 (0x0000) to 65535 (0xFFFF).
outputValue

The output value. It can be a number from 0 (0x0000) to 65280 (0xFF00). A value of 65280 (0xFF00)
requests the output to be ON (TRUE). A value of 0 (0x0000) requests it to be OFF (FALSE).

Description

Construct the Write Single Coil response.

responseWriteSingleRegister

TypeScript
responseWriteSingleRegister(outRegisterAddress: number, outValue: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

outRegisterAddress

The register address. It can be a number from 0 (0x0000) to 65535 (0xFFFF).
outValue

The output value. It can be a number from 0 (0x0000) to 65535 (0xFFFF).

Description

Construct the Write Single Register response.

Device Monitoring Studio Documentation Advanced Features

284

ReadFileRequest Interface

TypeScript
interface ReadFileRequest {
 // Properties
 referenceType: number;
 fileNumber: number;
 recordNumber: number;
 registerLength: number;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ReadFileRequest Properties

referenceType

TypeScript
referenceType: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Reference type.

fileNumber

TypeScript
fileNumber: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

File number.

recordNumber

Device Monitoring Studio Documentation Advanced Features

285

TypeScript
recordNumber: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Record number.

registerLength

TypeScript
registerLength: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Register length.

ReadFileResponse Interface

TypeScript
interface ReadFileResponse {
 // Properties
 referenceType: number;
 data: number [] | Uint16Array;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ReadFileResponse Properties

referenceType

TypeScript
referenceType: number;

Device Monitoring Studio Documentation Advanced Features

286

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Reference type.

data

TypeScript
data: number [] | Uint16Array;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Record data.

FileRecord Interface

TypeScript
interface FileRecord {
 // Properties
 referenceType: number;
 fileNumber: number;
 recordNumber: number;
 records: number [] | Uint16Array;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

FileRecord Properties

referenceType

TypeScript
referenceType: number;

C#
// This property is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

287

C++
// This property is not available in native environment

Description

Reference type.

fileNumber

TypeScript
fileNumber: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

File number.

recordNumber

TypeScript
recordNumber: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Record number.

records

TypeScript
records: number [] | Uint16Array;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Data payload.

Device Monitoring Studio Documentation Advanced Features

288

Remote Connection Manager Object

Remote Connection Manager Object allows you to connect to remote server, disconnect from remote
server and enumerate active connections. It is exposed by the global object remote and implements the
IRemoteHost interface.

Use the IRemoteHost.connectServer method to establish a remote connection. Use the
IRemoteHost.disconnectServer to close the remote connection and query the IRemoteHost.connections
property for a list of existing connections.

Events

Subscribe to IRemoteHost.connected or IRemoteHost.disconnected events to get notifications of
connection and disconnection events.

IRemoteHost Interface

Description

This interface consists of methods, properties and events supported by the Remote Connection Manager
Object.

This interface is exposed by the global object remote .

Declaration

TypeScript
interface IRemoteHost {
 // Properties
 readonly connections: string[];

 // Methods
 connectServer(serverName: string): boolean;
 disconnectServer(serverName: string): boolean;

 // Events
 connected(handler: (serverName: string) => void): number;
 connected(eventId: number): void;
 disconnected(handler: (serverName: string) => void): number;
 disconnected(eventId: number): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IRemoteHost Properties

connections

TypeScript
readonly connections: string[];

Device Monitoring Studio Documentation Advanced Features

289

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the array of strings representing connected computer names.

Example

Connect to a remote server and print the number of connections:

JavaScript
if (remote.connectServer("remote_server_name"))
 alert("Number of connections: " + remote.connections.length);

IRemoteHost Methods

connectServer

TypeScript
connectServer(serverName: string): boolean;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

serverName

Server name.

Return Value

Returns true if connection was successfully made, and false otherwise.

Description

Establishes a remote connection. Pass a resolvable computer name (DNS name, NETBIOS name, IP
address and so on) of a remote computer.

Example

Connect to a remote server and print the number of connections:

JavaScript
if (remote.connectServer("remote_server_name"))
 alert("Number of connections: " + remote.connections.length);

disconnectServer

Device Monitoring Studio Documentation Advanced Features

290

TypeScript
disconnectServer(serverName: string): boolean;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

serverName

Server name.

Return Value

Returns true if connection was successfully disconnected, and false otherwise.

Description

Closes a remote connection. Pass a resolvable computer name (DNS name, NETBIOS name, IP address
and so on) of a remote computer.

Example

Disconnect a given connection:

JavaScript
remote.disconnectServer("remote_server_name");

IRemoteHost Events

connected

TypeScript
connected(handler: (serverName: string) => void): number;
connected(eventId: number): void;

Parameters

serverName

Name of a remote computer.

Description

This event is fired when new remote connection is established.

First overload is used to bind new handler to the event. It returns a numeric eventId which then may
be passed to second overload to unbind a handler.

Example

Subscribing to connected and disconnected events:

Device Monitoring Studio Documentation Advanced Features

291

TypeScript
remote.connected(serverName=>alert("Connected: " + serverName + ". Total connections: " +
remote.connections.length));
remote.disconnected(serverName=>alert("Disconnected: " + serverName + ". Total connections: "
+ remote.connections.length));

disconnected

TypeScript
disconnected(handler: (serverName: string) => void): number;
disconnected(eventId: number): void;

Parameters

serverName

Name of a remote computer.

Description

This event is fired when existing remote connection is closed.

First overload is used to bind new handler to the event. It returns a numeric eventId which then may
be passed to second overload to unbind a handler.

Example

Subscribing to connected and disconnected events:

TypeScript
remote.connected(serverName=>alert("Connected: " + serverName + ". Total connections: " +
remote.connections.length));
remote.disconnected(serverName=>alert("Disconnected: " + serverName + ". Total connections: "
+ remote.connections.length));

Bridge Manager Object

Bridge Manager Object allows you to create, enumerate and persist serial bridges. It is exposed by the
global object bridge and implements the IBridgeHost interface.

Use the IBridgeHost.create method to create new serial bridge. Use the IBridgeHost.bridges property to
get all configured serial bridges. Use IBridgeHost.saveConfiguration and IBridgeHost.loadConfiguration
methods to save and load current configuration.

Use one of the following syntaxes to start serial bridge monitoring session:

TypeScript
var b = bridge.create("COM1", "COM2");

// 1. Use generic overload and match generic device name
var session = monitoring.createSession("Communication Port (COM1) <-> Communication Port
(COM2)");

// 2. Use specific bridge overload and match device name
var session = monitoring.createSession({ bridge: b.name });

// 3. Use specific bridge overload and pass bridge object directly
var session = monitoring.createSession({ bridge: b });

Device Monitoring Studio Documentation Advanced Features

292

IBridgeHost Interface

Description

This interface consists of methods and properties supported by the Bridge Manager Object.

This interface is exposed by the global object bridge .

Declaration

TypeScript
interface IBridgeHost {
 // Properties
 bridges: IBridge[];

 // Methods
 create(firstDevice: string,
 secondDevice: string,
 firstDeviceConfig?: IDeviceConfig,
 secondDeviceConfig?: IDeviceConfig): IBridge;
 saveConfiguration(name?: string): boolean;
 loadConfiguration(name?: string): boolean;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IBridgeHost Properties

bridges

TypeScript
bridges: IBridge[];

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the array of all created serial bridges.

IBridgeHost Methods

create

Device Monitoring Studio Documentation Advanced Features

293

TypeScript
create(firstDevice: string,
 secondDevice: string,
 firstDeviceConfig?: IDeviceConfig,
 secondDeviceConfig?: IDeviceConfig): IBridge;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

firstDevice

First serial device name.
secondDevice

Second serial device name.
firstDeviceConfig

First serial device configuration object. If omitted, system default is used.
secondDeviceConfig

Second serial device configuration object. If omitted, bridge will use the same configuration for
both devices.

Return Value

Returns created serial bridge object.

Description

Creates new serial bridge.

Example

Create new serial bridge:

JavaScript
// Create bridge between COM1 and COM2 with baud rate 115200, 8 byte size and hardware flow
control
// All other parameters are taken from COM1's defaults
var b = bridge.create("COM1", "COM2", {
 baudRate: 115200,
 dataBits: 8,
 flowControl: flowControl.hardware
});

saveConfiguration

TypeScript
saveConfiguration(name?: string): boolean;

C#
// This method is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

294

C++
// This method is not available in native environment

Parameters

name

Optional configuration name. If omitted or passed empty string, saves default configuration.
Default configuration is automatically loaded on Device Monitoring Studio startup.

Return Value

Returns true if configuration has been successfully saved, false otherwise.

Description

Saves current serial bridge configuration.

loadConfiguration

TypeScript
loadConfiguration(name?: string): boolean;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

Optional configuration name. If omitted or passed empty string, loads default configuration.

Return Value

Returns true if configuration has been successfully loaded, false otherwise.

Description

Loads serial bridge configuration.

IBridge IDeviceConfig

Bridge Object

Bridge Object represents the created serial bridge. You get a reference to the bridge object either by
calling IBridgeHost.create method or by enumerating the IBridgeHost.bridges property.

Query the IBridge.firstDevice or IBridge.secondDevice properties to get or change bridge device
properties, query the IBridge.name property to get auto-assigned bridge name or use the
IBridge.destroy method to delete bridge.

IBridge Interface

Description

Device Monitoring Studio Documentation Advanced Features

295

This interface consists of methods and properties supported by the Bridge Object.

Declaration

TypeScript
interface IBridge {
 // Properties
 firstDevice: IDeviceConfig;
 secondDevice: IDeviceConfig;
 name: string;

 // Methods
 destroy(): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IBridge Properties

firstDevice

TypeScript
firstDevice: IDeviceConfig;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the reference to bridge's first device configuration object.

secondDevice

TypeScript
secondDevice: IDeviceConfig;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the reference to bridge's second device configuration object.

Device Monitoring Studio Documentation Advanced Features

296

name

TypeScript
name: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the auto-assigned bridge name.

IBridge Methods

destroy

TypeScript
destroy(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Deletes the serial bridge.

IDeviceConfig

File Manager Object

File Manager object provides a number of methods to access the file system. It implements the
IFileManager interface and is available through a global object fileManager .

Use IFileManager.createFile method to create or open a file.

Use IFileManager.deleteFile to delete an existing file.

IFileManager.createFolder and IFileManager.deleteFolder may be used to create or delete folder,
respectively.

Call IFileManager.enumFiles to enumerate files in a folder.

Reference

IFileManager Interface

Description

Device Monitoring Studio Documentation Advanced Features

297

This interface is implemented by File Manager Object. It provides basic methods to work with a file
system, like opening or creating files and folders, deleting files and folders and enumerating the
contents of a folder.

Declaration

TypeScript
interface IFileManager {

 // Methods
 createFile(path: string,
 openMode: File.OpenMode,
 access: File.Access,
 share?: File.Share): IFile;
 deleteFile(path: string): void;
 enumFiles(folder: string, mask?: string): Promise<string[]>;
 copyFile(source: string, destination: string, overwrite?: boolean): Promise<void>;
 moveFile(source: string, destination: string, overwrite?: boolean): Promise<void>;
 createFolder(path: string): void;
 deleteFolder(path: string): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IFileManager Methods

createFile

TypeScript
createFile(path: string,
 openMode: File.OpenMode,
 access: File.Access,
 share?: File.Share): IFile;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

path

Full path to the file being opened or created.
openMode

File opening mode. See File.OpenMode topic for more information.
access

File access mode. A file may be opened for reading, writing or both reading and writing.
share

File sharing mode. Tells the file system how it should handle other process attempts to open a file.

Device Monitoring Studio Documentation Advanced Features

298

If omitted, equals to File.Share.Exclusive .

Return Value

An opened file object.

Description

Creates or opens a file.

Example

Open an existing file for reading

TypeScript
var file = fileManager.createFile("c:\\temp\\file.txt", File.OpenMode.OpenExisting,
File.Access.Read, File.Share.Read);

deleteFile

TypeScript
deleteFile(path: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

path

Full path to the file to delete.

Description

Deletes a given file.

enumFiles

TypeScript
enumFiles(folder: string, mask?: string): Promise<string[]>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

folder

Full path to the folder the caller wants to enumerate.
mask

Device Monitoring Studio Documentation Advanced Features

299

An optional mask to match files during enumeration. If omitted, equals to "*".

Description

Enumerate files in a given folder. The method executes asynchronously and returns a list of file names
that match a given mask.

Example

Enumerating files in a folder

TypeScript
var files = await fileManager.enumFiles("c:\\temp", "*.txt");

copyFile

TypeScript
copyFile(source: string, destination: string, overwrite?: boolean): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

source

Full path to the source file.
destination

Full path to the destination file.
overwrite

An optional parameter that tells if the destination file should be overridden if it exists. If omitted,
defaults to false .

Description

Copies a source file to destination. The method executes asynchronously.

Example

Copying a file

TypeScript
await fileManager.copyFile(source, destination);

moveFile

TypeScript
moveFile(source: string, destination: string, overwrite?: boolean): Promise<void>;

Device Monitoring Studio Documentation Advanced Features

300

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

source

Full path to the source file.
destination

Full path to the destination file.
overwrite

An optional parameter that tells if the destination file should be overridden if it exists. If omitted,
defaults to false .

Description

Moves a source file to destination or renames a file. The method executes asynchronously.

Example

Renaming a file

TypeScript
await fileManager.moveFile(source, destination);

createFolder

TypeScript
createFolder(path: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

path

Full path to the folder being created.

Description

Creates a folder. If one or more intermediate folders in a given path do not exist, they are also created
by this function.

deleteFolder

Device Monitoring Studio Documentation Advanced Features

301

TypeScript
deleteFolder(path: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

path

Full path to the folder being deleted.

Description

Deletes a given folder. A folder must be empty to be successfully deleted.

File Namespace

File.OpenMode Enumeration

Description

File opening mode constants. See IFileManager.createFile for more information.

Symbol Value Description
CreateNew 1 Creates a new file, only if it does not already exist. If the

specified file exists, the function fails with “File Exists”
exception. If the specified file does not exist and is a valid
path to a writable location, a new file is created.

CreateAlways 2 Creates a new file, always. If the specified file exists and is
writable, the function overwrites the file. If the specified
file does not exist and is a valid path, a new file is
created.

OpenExisting 3 Opens a file or device, only if it exists. If the specified file
does not exist, the function fails with “File Not Found”
exception.

OpenAlways 4 Opens a file, always. If the specified file does not exist
and is a valid path to a writable location, the function
creates a file.

TruncateExisting 5 Opens a file and truncates it so that its size is zero bytes,
only if it exists. If the specified file does not exist, the
function fails with “File Not Found” exception. The caller
must open the file with the File.Access.Write access
specifier.

File.Access Enumeration

Description

File access rights constants. See IFileManager.createFile function for more information.

Device Monitoring Studio Documentation Advanced Features

302

Symbol Value Description
Read 1 Opens a file for reading.
Write 2 Opens a file for writing.
ReadWrite 3 Opens a file both for reading and writing.

File.Share Enumeration

Description

File sharing rights. See IFileManager.createFile function for more information.

Symbol Value Description
Exclusive 0 Opens a file for exclusive access.
Read 1 Allows other processes to read from a file.
Write 2 Allows other processes to write to a file.
Delete 4 Allows other processes to delete a file.

File Object

File object implements the IFile interface. File objects are created using the IFileManager.createFile
method.

File objects provide methods to read and write file data, query file size and query and update the current
file position.

IFile Interface

Description

This interface is implemented by a File Object.

Declaration

TypeScript
interface IFile {
 // Properties
 currentPosition: number;
 readonly size: number;
 readonly isOpen: boolean;

 // Methods
 read(size: number, position?: number): Promise<Uint8Array>;
 write(data: number[] | Uint8Array | DataView | ArrayBuffer, position?: number):
Promise<number>;
 setEnd(): void;
 close(): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IFile Properties

Device Monitoring Studio Documentation Advanced Features

303

currentPosition

TypeScript
currentPosition: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

This property represents the current file's position.

size

TypeScript
readonly size: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

This property holds the current file's size.

isOpen

TypeScript
readonly isOpen: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

This property evaluates to false after calling the IFile.close method.

@returns false after calling IFile.close method, true otherwise.

IFile Methods

Device Monitoring Studio Documentation Advanced Features

304

read

TypeScript
read(size: number, position?: number): Promise<Uint8Array>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

size

The number of bytes to read.
position

Optional starting offset for the operation. If omitted, the file's current position is used (and later
updated).

Return Value

Data read from a file.

Description

Reads data from a file. This method executes asynchronously.

Example

Reading from a file

TypeScript
var data = await file.read(4096);

write

TypeScript
write(data: number[] | Uint8Array | DataView | ArrayBuffer, position?: number):
Promise<number>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

data

The data to be written.
position

Optional starting offset for the operation. If omitted, the file's current position is used (and later
updated).

Device Monitoring Studio Documentation Advanced Features

305

Return Value

The number of bytes written.

Description

Writes data to a file. This method executes asynchronously.

Example

Writing to a file

TypeScript
// Copy first 4KB of file to second 4KB

var data = await file.read(4096, 0);
await file.write(data, 4096);

setEnd

TypeScript
setEnd(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Changes the size of a file to be the same as IFile.currentPosition.

close

TypeScript
close(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Closes the file. File object may not be used after calling this method. Only IFile.isOpen property may
safely be used after calling this method.

HID Manager Object

HID Manager object provides a scripting access to HID Send module. It is available as a global variable
hid and implements the IHidManager interface.

Device Monitoring Studio Documentation Advanced Features

306

IHIDManager.devices property returns an array of supported HID devices. Call the
IHIDManager.createSession method to create new HID Send session object and use
IHIDManager.sessions property to get an array of all currently running sessions.

IHIDManager.closeAllSessions method may be called to stop all running sessions.

IHIDManager Interface

Description

This interface is implemented by HID Manager.

Declaration

TypeScript
interface IHIDManager {
 // Properties
 readonly devices: IHIDDevice[];
 sessions: IHIDSession[];

 // Methods
 createSession(device: IHIDDevice): IHIDSession;
 createSession(deviceKey: string): IHIDSession;
 createSession(vendorId: number,
 productId: number,
 searchOptions?: { serialNumber?: string; usage?: number; usagePage?: number }):
IHIDSession;
 closeAllSessions(): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDManager Properties

devices

TypeScript
readonly devices: IHIDDevice[];

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the array of HID device objects.

Example

Obtain a list of detected HID devices and their information:

Device Monitoring Studio Documentation Advanced Features

307

JavaScript
var devices = hid.devices;
for (var i = 0; i < devices.length; ++i)
 alert(devices[i].vendorId + "." + devices[i].productId);

sessions

TypeScript
sessions: IHIDSession[];

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Returns the array of HID session objects.

Example

Obtain a list of HID sessions and print their corresponding device information:

JavaScript
var sessions = hid.sessions;
for (var i = 0; i < sessions.length; ++i)
 alert(devices[i].vendorId + "." + devices[i].productId);

IHIDManager Methods

createSession

TypeScript
createSession(device: IHIDDevice): IHIDSession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

device

A device object. Use the IHIDManager.devices property to get a reference to a device object.

Return Value

Returns the reference to created session object.

Description

Device Monitoring Studio Documentation Advanced Features

308

Creates new HID session.

Example

Create new HID session:

JavaScript
var session1 = hid.createSession(hid.devices[0]);

createSession

TypeScript
createSession(deviceKey: string): IHIDSession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

deviceKey

A HID device identifier (also known as device key).

Return Value

Returns the reference to created session object.

Description

Creates new HID Session.

createSession

TypeScript
createSession(vendorId: number,
 productId: number,
 searchOptions?: { serialNumber?: string; usage?: number; usagePage?: number }):
IHIDSession;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

vendorId

A HID device vendor ID.
productId

A HID device product ID.

Device Monitoring Studio Documentation Advanced Features

309

searchOptions

Optional search parameters. Use it when there can be several devices of the same type connected
to a computer. You can specify device serial number, usage or usage page.

Return Value

Returns the reference to created session object.

Description

Creates new HID Session.

Example

Create new HID session:

JavaScript
var session = hid.createSession(0x1234, 0x5678, { serialNumber: "XXX0001" });

closeAllSessions

TypeScript
closeAllSessions(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Stops and closes all running HID sessions.

HID Device Object

HID Device represents detected HID device. Device object implements IHIDDevice interface and allows
you to query various device properties.

IHIDDevice Interface

Description

This interface is implemented by HID Device Object. All properties are read-only.

Declaration

Device Monitoring Studio Documentation Advanced Features

310

TypeScript
interface IHIDDevice {
 // Properties
 deviceKey: string;
 vendorId: number;
 productId: number;
 serialNumber: string;
 releaseNumber: number;
 manufacturer: string;
 product: string;
 interfaceNumber: number;
 caps: IHIDCaps;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDDevice Properties

deviceKey

TypeScript
deviceKey: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device identifier (device key).

vendorId

TypeScript
vendorId: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device vendor identifier.

productId

Device Monitoring Studio Documentation Advanced Features

311

TypeScript
productId: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device product identifier.

serialNumber

TypeScript
serialNumber: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device serial number.

releaseNumber

TypeScript
releaseNumber: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device release number (also known as Manufacturer Release Number).

manufacturer

TypeScript
manufacturer: string;

C#
// This property is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

312

C++
// This property is not available in native environment

Description

HID device manufacturer.

product

TypeScript
product: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device product name.

interfaceNumber

TypeScript
interfaceNumber: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device interface number.

caps

TypeScript
caps: IHIDCaps;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device usage page.

Device Monitoring Studio Documentation Advanced Features

313

HID Session Object

HID Session object represents a configured HID session. Please see methods and properties of the
IHIDSession interface for capabilities and actions of a session object.

You obtain a reference to a session object by calling IHIDManager.createSession method.

Reference

HID Namespace

HID.ReportType Enumeration

Description

HID report types.

Symbol Value Description
Input 0 Indicates an input report.
Output 1 Indicates an output report.
Feature 2 Indicates a feature report.

IHIDSession Interface

Description

This interface is implemented by HID Session Object.

Declaration

Device Monitoring Studio Documentation Advanced Features

314

TypeScript
interface IHIDSession {
 // Properties
 vendorId: number;
 productId: number;
 device: IHIDDevice;
 inputBuffersCount: number;

 // Methods
 start(): void;
 stop(): void;
 setFeature(reportId: number, v: number[] | ArrayBuffer | DataView | Uint8Array): void;
 getFeature(reportId: number): Uint8Array;
 send(byte: number): Promise<void>;
 send(bytes: number [] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView):
Promise<void>;
 send(text: string): Promise<void>;
 receive(): Promise<Uint8Array>;
 getReport(reportId: number): Uint8Array;
 setReport(reportId: number, v: number[] | ArrayBuffer | DataView | Uint8Array): void;
 getLinkCollectionNodes(): IHIDNode[];
 getValueCaps(reportType: HID.ReportType): IHIDValueCaps[];
 getSpecificValueCaps(reportType: HID.ReportType, usagePage: number, usage: number,
linkCollection: number): IHIDValueCaps[];
 getButtonCaps(reportType: HID.ReportType): IHIDButtonCaps[];
 getSpecificButtonCaps(reportType: HID.ReportType, usagePage: number, usage: number,
linkCollection: number): IHIDButtonCaps[];
 createBuilder(): IHIDBuilder;
 createParser(): IHIDParser;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDSession Properties

vendorId

TypeScript
vendorId: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device vendor identifier.

productId

TypeScript
productId: number;

Device Monitoring Studio Documentation Advanced Features

315

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HID device product identifier.

device

TypeScript
device: IHIDDevice;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Reference to the HID device object.

inputBuffersCount

TypeScript
inputBuffersCount: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Number of input buffers.

IHIDSession Methods

start

TypeScript
start(): void;

C#
// This method is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

316

C++
// This method is not available in native environment

Description

Starts a HID session.

stop

TypeScript
stop(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Stops a HID session.

setFeature

TypeScript
setFeature(reportId: number, v: number[] | ArrayBuffer | DataView | Uint8Array): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportId

Feature report ID.
v

Raw feature report bytes.

Description

Sends feature report.

getFeature

TypeScript
getFeature(reportId: number): Uint8Array;

Device Monitoring Studio Documentation Advanced Features

317

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportId

Feature report id.

Return Value

Raw feature report bytes.

Description

Receive feature report.

send

TypeScript
send(byte: number): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

byte

Single byte to send.

Description

Send data to a HID session.

send

TypeScript
send(bytes: number [] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView):
Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

bytes

Device Monitoring Studio Documentation Advanced Features

318

A JavaScript array of integer numbers to be sent to the session.

Description

Send data to a HID session.

send

TypeScript
send(text: string): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

text

A text string to send (ASCII encoding).

Description

Send data to a HID session.

receive

TypeScript
receive(): Promise<Uint8Array>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Receive (read) data from the session. This function returns a promise that produces a byte array when
ready.

getReport

TypeScript
getReport(reportId: number): Uint8Array;

C#
// This method is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

319

C++
// This method is not available in native environment

Parameters

reportId

Feature report ID.

Return Value

Raw input report bytes.

Description

Receive input report.

setReport

TypeScript
setReport(reportId: number, v: number[] | ArrayBuffer | DataView | Uint8Array): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportId

Output report ID.
v

Raw output report bytes.

Description

Sends output report.

getLinkCollectionNodes

TypeScript
getLinkCollectionNodes(): IHIDNode[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Returns a top-level collection's link collection array.

Device Monitoring Studio Documentation Advanced Features

320

getValueCaps

TypeScript
getValueCaps(reportType: HID.ReportType): IHIDValueCaps[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.

Description

Returns a value capability array that describes all the HID control values in a top-level collection for a
specified type of HID report.

getSpecificValueCaps

TypeScript
getSpecificValueCaps(reportType: HID.ReportType, usagePage: number, usage: number,
linkCollection: number): IHIDValueCaps[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies a usage page as a search criteria. If usagePage is nonzero, only buttons that specify this
usage page are returned.

usage

Specifies a HID usage as a search criteria. If usage is nonzero, only buttons that specify this usage
will be returned.

linkCollection

Specifies a link collection as a search criteria. If linkCollection is nonzero, only buttons that are
part of this link collection are returned.

Description

Returns a value capability array that describes all HID control values that meet a specified selection
criteria.

Device Monitoring Studio Documentation Advanced Features

321

getButtonCaps

TypeScript
getButtonCaps(reportType: HID.ReportType): IHIDButtonCaps[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.

Description

Returns a button capability array that describes all the HID control buttons in a top-level collection for
a specified type of HID report.

getSpecificButtonCaps

TypeScript
getSpecificButtonCaps(reportType: HID.ReportType, usagePage: number, usage: number,
linkCollection: number): IHIDButtonCaps[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies a usage page as a search criteria. If usagePage is nonzero, only buttons that specify this
usage page are returned.

usage

Specifies a HID usage as a search criteria. If usage is nonzero, only buttons that specify this usage
will be returned.

linkCollection

Specifies a link collection as a search criteria. If linkCollection is nonzero, only buttons that are
part of this link collection are returned.

Description

Returns a button capability array that describes all HID control buttons in a top-level collection that
meet a specified selection criteria.

Device Monitoring Studio Documentation Advanced Features

322

createBuilder

TypeScript
createBuilder(): IHIDBuilder;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Create a HID report builder object. This object implements IHIDBuilder interface and allows you to
construct HID reports given the required parameters.

createParser

TypeScript
createParser(): IHIDParser;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Create a HID report parser object. This object implements IHIDParser interface and allows you to parse
reports received from the device.

IHIDDevice

IHIDParser Interface

Description

This interface is implemented by HID Session object and allows you to parse the HID report received
from the device.

Declaration

Device Monitoring Studio Documentation Advanced Features

323

TypeScript
interface IHIDParser {

 // Methods
 getData(reportType: HID.ReportType, reportData: Uint8Array): IHIDData[];
 getUsages(reportType: HID.ReportType,
 usagePage: number,
 linkCollection: number,
 reportData: Uint8Array): number[];
 getUsagesEx(reportType: HID.ReportType, linkCollection: number, reportData: Uint8Array):
IHIDUsageAndPage[];
 getButtons(reportType: HID.ReportType, usagePage: number, linkCollection: number,
reportData: Uint8Array): number[];
 getButtonsEx(reportType: HID.ReportType, linkCollection: number, reportData: Uint8Array):
IHIDUsageAndPage[];
 getUsageValue(reportType: HID.ReportType, usagePage: number, usage: number, linkCollection:
number): number;
 getScaledUsageValue(reportType: HID.ReportType,
 usagePage: number,
 usage: number,
 linkCollection: number,
 reportData: Uint8Array): number;
 getUsageValueArray(reportType: HID.ReportType,
 usagePage: number,
 usage: number,
 linkCollection: number,
 reportData: Uint8Array): Uint8Array;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDParser Methods

getData

TypeScript
getData(reportType: HID.ReportType, reportData: Uint8Array): IHIDData[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
reportData

Raw HID report bytes.

Description

Returns, for a specified report, an array of data objects that identify the data indices of all HID control
buttons that are currently set to ON (1), and the data indices and data associated with all HID control

Device Monitoring Studio Documentation Advanced Features

324

values.

getUsages

TypeScript
getUsages(reportType: HID.ReportType,
 usagePage: number,
 linkCollection: number,
 reportData: Uint8Array): number[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page of the button usages. The method only returns information about
buttons on this usage page.

linkCollection

Specifies the link collection of the button usages. If linkCollection is nonzero, the routine only
returns information about the buttons that this link collection contains; otherwise, if
linkCollection is zero, the routine returns information about all the buttons in the top-level
collection.

reportData

Raw HID report bytes.

Description

Returns a value capability array that describes all HID control values that meet a specified selection
criteria.

getUsagesEx

TypeScript
getUsagesEx(reportType: HID.ReportType, linkCollection: number, reportData: Uint8Array):
IHIDUsageAndPage[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Device Monitoring Studio Documentation Advanced Features

325

Type of the report.
linkCollection

Specifies the link collection of the button usages. If linkCollection is nonzero, the routine only
returns information about the buttons that this link collection contains; otherwise, if
linkCollection is zero, the routine returns information about all the buttons in the top-level
collection.

reportData

Raw HID report bytes.

Description

Returns a list of the all the HID control button usages that are set to ON in a HID report.

getButtons

TypeScript
getButtons(reportType: HID.ReportType, usagePage: number, linkCollection: number, reportData:
Uint8Array): number[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page of the button usages. The method only returns information about
buttons on this usage page.

linkCollection

Specifies the link collection of the button usages. If linkCollection is nonzero, the routine only
returns information about the buttons that this link collection contains; otherwise, if
linkCollection is zero, the routine returns information about all the buttons in the top-level
collection.

reportData

Raw HID report bytes.

Description

Returns a value capability array that describes all HID control values that meet a specified selection
criteria.

getButtonsEx

Device Monitoring Studio Documentation Advanced Features

326

TypeScript
getButtonsEx(reportType: HID.ReportType, linkCollection: number, reportData: Uint8Array):
IHIDUsageAndPage[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
linkCollection

Specifies the link collection of the button usages. If linkCollection is nonzero, the routine only
returns information about the buttons that this link collection contains; otherwise, if
linkCollection is zero, the routine returns information about all the buttons in the top-level
collection.

reportData

Raw HID report bytes.

Description

Returns a list of the all the HID control button usages that are set to ON in a HID report.

getUsageValue

TypeScript
getUsageValue(reportType: HID.ReportType, usagePage: number, usage: number, linkCollection:
number): number;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the value's usage page.
usage

Specifies the usage of the value.
linkCollection

Specifies the link collection that contains the value. If linkCollection is nonzero, the routine only
searches for the usage in this link collection; otherwise, if linkCollection is zero, the routine
searches for the usage in the top-level collection. reportData: Uint8ArrayRaw HID report bytes.

Device Monitoring Studio Documentation Advanced Features

327

Description

Extracts the data associated with a HID control value that matches the selection criteria in a HID report.

getScaledUsageValue

TypeScript
getScaledUsageValue(reportType: HID.ReportType,
 usagePage: number,
 usage: number,
 linkCollection: number,
 reportData: Uint8Array): number;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page of the value to extract.
usage

Specifies the usage of the value to extract.
linkCollection

Specifies the link collection identifier of the value to extract. A linkCollection value of zero
identifies the top-level collection.

reportData

Raw HID report bytes.

Description

Returns the signed and scaled result of a HID control value extracted from a HID report.

getUsageValueArray

TypeScript
getUsageValueArray(reportType: HID.ReportType,
 usagePage: number,
 usage: number,
 linkCollection: number,
 reportData: Uint8Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Device Monitoring Studio Documentation Advanced Features

328

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page of the usage value array.
usage

Specifies the usage of the usage value array.
linkCollection

Specifies the link collection that contains the usage value array. If linkCollection is nonzero, the
routine only searches for a usage value array in this link collection; otherwise, if linkCollection is
zero, the routine searches for a usage value array in the top-level collection.

reportData

Raw HID report bytes.

Description

Extracts the data associated with a HID control usage value array from a HID report.

HID.ReportType

IHIDBuilder Interface

Description

This interface is implemented by HID Session object and allows you to construct HID reports to be sent
to the device.

Declaration

TypeScript
interface IHIDBuilder {

 // Methods
 setData(reportType: HID.ReportType, data: IHIDData[]): Uint8Array;
 setUsageValue(reportType: HID.ReportType, usagePage: number, usage: number, linkCollection:
number, v: number): Uint8Array;
 setScaledUsageValue(reportType: HID.ReportType, usagePage: number, usage: number,
linkCollection: number, v: number): Uint8Array;
 setUsageValueArray(reportType: HID.ReportType, usagePage: number, usage: number,
linkCollection: number, data: Uint8Array): Uint8Array;
 setUsages(reportType: HID.ReportType, usagePage: number, linkCollection: number, data:
number[] | Uint16Array): Uint8Array;
 setButtons(reportType: HID.ReportType, usagePage: number, linkCollection: number, data:
number[] | Uint16Array): Uint8Array;
 unsetUsages(reportType: HID.ReportType, usagePage: number, linkCollection: number, data:
number[] | Uint16Array): Uint8Array;
 unsetButtons(reportType: HID.ReportType, usagePage: number, linkCollection: number, data:
number[] | Uint16Array): Uint8Array;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

Device Monitoring Studio Documentation Advanced Features

329

IHIDBuilder Methods

setData

TypeScript
setData(reportType: HID.ReportType, data: IHIDData[]): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

The type of the report.
data

Array of data objects that specify which buttons and usage values to set.

Description

Sets a specified set of HID control button and value usages in a HID report.

setUsageValue

TypeScript
setUsageValue(reportType: HID.ReportType, usagePage: number, usage: number, linkCollection:
number, v: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page of a usage.
usage

Specifies the usage.
linkCollection

Specifies the link collection that contains the usage. If linkCollection is nonzero, the routine only
sets the usage, if one exists, in this link collection. If linkCollection is zero, the routine sets the
first usage it finds in the top-level collection.

v

Device Monitoring Studio Documentation Advanced Features

330

The value to set.

Description

Sets a HID control value in a specified HID report.

setScaledUsageValue

TypeScript
setScaledUsageValue(reportType: HID.ReportType, usagePage: number, usage: number,
linkCollection: number, v: number): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page of a usage.
usage

Specifies the usage.
linkCollection

Specifies the link collection that contains the usage. If linkCollection is nonzero, the routine only
sets the usage, if one exists, in this link collection. If linkCollection is zero, the routine sets the
first usage it finds in the top-level collection.

v

The value to set.

Description

Converts a signed and scaled physical number to a HID usage's logical value, and sets the usage value
in a specified HID report.

setUsageValueArray

TypeScript
setUsageValueArray(reportType: HID.ReportType, usagePage: number, usage: number,
linkCollection: number, data: Uint8Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Device Monitoring Studio Documentation Advanced Features

331

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page of a usage.
usage

Specifies the usage.
linkCollection

Specifies the link collection that contains the usage. If linkCollection is nonzero, the routine only
sets the usage, if one exists, in this link collection. If linkCollection is zero, the routine sets the
first usage it finds in the top-level collection.

data

The value array to set.

Description

Sets a HID control usage value array in a specified HID report.

setUsages

TypeScript
setUsages(reportType: HID.ReportType, usagePage: number, linkCollection: number, data:
number[] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page for the usages.
linkCollection

Specifies the link collection that contains the usages. If linkCollection is nonzero, the routine
only sets the usages, if they exist, in this link collection. If linkCollection is zero, the routine sets
the first usage for each specified usage in the top-level collection.

data

Data array to set.

Description

Sets specified HID control buttons ON (1) in a HID report.

Device Monitoring Studio Documentation Advanced Features

332

setButtons

TypeScript
setButtons(reportType: HID.ReportType, usagePage: number, linkCollection: number, data:
number[] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page for the usages.
linkCollection

Specifies the link collection that contains the usages. If linkCollection is nonzero, the routine
only sets the usages, if they exist, in this link collection. If linkCollection is zero, the routine sets
the first usage for each specified usage in the top-level collection.

data

Data array to set.

Description

Sets specified HID control buttons ON (1) in a HID report.

unsetUsages

TypeScript
unsetUsages(reportType: HID.ReportType, usagePage: number, linkCollection: number, data:
number[] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page for the usages.
linkCollection

Specifies the link collection that contains the usages. If linkCollection is nonzero, the routine

Device Monitoring Studio Documentation Advanced Features

333

only sets the usages, if they exist, in this link collection. If linkCollection is zero, the routine sets
the first usage for each specified usage in the top-level collection.

data

Data array to set.

Description

Sets specified HID control button usages OFF (zero) in a HID report.

unsetButtons

TypeScript
unsetButtons(reportType: HID.ReportType, usagePage: number, linkCollection: number, data:
number[] | Uint16Array): Uint8Array;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

reportType

Type of the report.
usagePage

Specifies the usage page for the usages.
linkCollection

Specifies the link collection that contains the usages. If linkCollection is nonzero, the routine
only sets the usages, if they exist, in this link collection. If linkCollection is zero, the routine sets
the first usage for each specified usage in the top-level collection.

data

Data array to set.

Description

Sets specified HID control button usages OFF (zero) in a HID report.

HID.ReportType IHIDData

IHIDCaps Interface

Description

This interface is implemented by HID capability object. You can get HID capabilities using the
IHIDDevice.caps property.

Declaration

Device Monitoring Studio Documentation Advanced Features

334

TypeScript
interface IHIDCaps {
 // Properties
 usage: number;
 usagePage: number;
 inputReportLength: number;
 outputReportLength: number;
 featureReportLength: number;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDCaps Properties

usage

TypeScript
usage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the top-level collection's usage page.

usagePage

TypeScript
usagePage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies a top-level collection's usage ID.

inputReportLength

Device Monitoring Studio Documentation Advanced Features

335

TypeScript
inputReportLength: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies a maximum length, in bytes, of the input report.

outputReportLength

TypeScript
outputReportLength: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies a maximum length, in bytes, of the output report.

featureReportLength

TypeScript
featureReportLength: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies a maximum length, in bytes, of the feature report.

IHIDRange Interface

Description

This interface is implemented by HID range object. It specifies the range of a parameter (by specifying
minimum and maximum values).

Declaration

Device Monitoring Studio Documentation Advanced Features

336

TypeScript
interface IHIDRange {
 // Properties
 min: number;
 max: number;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDRange Properties

min

TypeScript
min: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the minimum value of a parameter.

max

TypeScript
max: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the maximum value of a parameter.

IHIDValue Interface

Description

This interface is implemented by HID value object.

Declaration

Device Monitoring Studio Documentation Advanced Features

337

TypeScript
interface IHIDValue {
 // Properties
 isRange: boolean;
 value: IHIDRange | number;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDValue Properties

isRange

TypeScript
isRange: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

true if value property has the type IHIDRange and false if it is a number.

value

TypeScript
value: IHIDRange | number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Contains the actual parameter value. Can be either an instance of IHIDRange or a number, depending
on the isRange property's value.

IHIDValueCaps Interface

Description

Device Monitoring Studio Documentation Advanced Features

338

This interface is implemented by HID value capability object.

Declaration

TypeScript
interface IHIDValueCaps {
 // Properties
 usagePage: number;
 reportID: number;
 isAlias: boolean;
 bitField: number;
 linkCollection: number;
 linkUsage: number;
 linkUsagePage: number;
 isAbsolute: boolean;
 hasNull: boolean;
 bitSize: number;
 reportCount: number;
 unitsExp: number;
 units: number;
 logical: IHIDRange;
 physical: IHIDRange;
 usage: IHIDValue;
 string: IHIDValue;
 designator: IHIDValue;
 dataIndex: IHIDValue;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDValueCaps Properties

usagePage

TypeScript
usagePage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage page of the usage or usage range.

reportID

TypeScript
reportID: number;

Device Monitoring Studio Documentation Advanced Features

339

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the report ID of the HID report that contains the usage or usage range.

isAlias

TypeScript
isAlias: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Indicates, if true, that the usage is member of a set of aliased usages. Otherwise, if isAlias is false, the
value has only one usage.

bitField

TypeScript
bitField: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Contains the data fields (one or two bytes) associated with an input, output, or feature main item.

linkCollection

TypeScript
linkCollection: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

340

Description

Specifies the index of the link collection in a top-level collection's link collection array that contains the
usage or usage range. If linkCollection is zero, the usage or usage range is contained in the top-level
collection.

linkUsage

TypeScript
linkUsage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage of the link collection that contains the usage or usage range. If linkCollection is
zero, linkUsage specifies the usage of the top-level collection.

linkUsagePage

TypeScript
linkUsagePage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage page of the link collection that contains the usage or usage range. If linkCollection
is zero, linkUsagePage specifies the usage page of the top-level collection.

isAbsolute

TypeScript
isAbsolute: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Device Monitoring Studio Documentation Advanced Features

341

Specifies, if true, that the usage or usage range provides absolute data. Otherwise, if isAbsolute is false,
the value is the change in state from the previous value.

hasNull

TypeScript
hasNull: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies, if true, that the usage supports a NULL value, which indicates that the data is not valid and
should be ignored. Otherwise, if hasNull is false, the usage does not have a NULL value.

bitSize

TypeScript
bitSize: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the size, in bits, of a usage's data field in a report. If reportCount is greater than one, each
usage has a separate data field of this size.

reportCount

TypeScript
reportCount: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the number of usages that this structure describes.

Device Monitoring Studio Documentation Advanced Features

342

unitsExp

TypeScript
unitsExp: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage's exponent, as described by the USB HID standard.

units

TypeScript
units: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage's units, as described by the USB HID Standard.

logical

TypeScript
logical: IHIDRange;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies a usage's signed lower and upper bounds.

physical

TypeScript
physical: IHIDRange;

Device Monitoring Studio Documentation Advanced Features

343

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies a usage's signed lower and upper bounds after scaling is applied to the logical range.

usage

TypeScript
usage: IHIDValue;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Usage.

string

TypeScript
string: IHIDValue;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

String descriptor.

designator

TypeScript
designator: IHIDValue;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

344

Description

Designator.

dataIndex

TypeScript
dataIndex: IHIDValue;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Data index.

IHIDRange

IHIDNode Interface

Description

This interface is implemented by HID node object.

Declaration

TypeScript
interface IHIDNode {
 // Properties
 linkUsage: number;
 linkUsagePage: number;
 parentIndex: number;
 numberOfChildren: number;
 nextSibling: number;
 firstChild: number;
 collectionType: number;
 isAlias: boolean;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDNode Properties

linkUsage

Device Monitoring Studio Documentation Advanced Features

345

TypeScript
linkUsage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage ID of a top-level collection.

linkUsagePage

TypeScript
linkUsagePage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage page of the collection.

parentIndex

TypeScript
parentIndex: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the index of the collection's parent collection. If the collection has no parent, Parent is zero.

numberOfChildren

TypeScript
numberOfChildren: number;

C#
// This property is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

346

C++
// This property is not available in native environment

Description

Specifies the number of child collections that the collection contains.

nextSibling

TypeScript
nextSibling: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the index of the collection's immediate sibling. If the collection has no sibling, NextSibling is
zero.

firstChild

TypeScript
firstChild: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the index of the collection's first child collection. If the collection has no children, FirstChild is
zero.

collectionType

TypeScript
collectionType: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Device Monitoring Studio Documentation Advanced Features

347

Specifies the type of collection item.

isAlias

TypeScript
isAlias: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies, if true , that this collection is an aliased collection. Otherwise, if false , the collection is not
aliased.

IHIDData Interface

Description

This interface is implemented by HID data object.

Declaration

TypeScript
interface IHIDData {
 // Properties
 index: number;
 data: number;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDData Properties

index

TypeScript
index: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

348

Description

Specifies the data index of a control.

data

TypeScript
data: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies a data value.

IHIDButtonCaps Interface

Description

This interface is implemented by HID button capability object.

Declaration

TypeScript
interface IHIDButtonCaps {
 // Properties
 usagePage: number;
 reportID: number;
 isAlias: boolean;
 bitField: number;
 linkCollection: number;
 linkUsage: number;
 linkUsagePage: number;
 isAbsolute: boolean;
 usage: IHIDValue;
 string: IHIDValue;
 designator: IHIDValue;
 dataIndex: IHIDValue;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHIDButtonCaps Properties

usagePage

Device Monitoring Studio Documentation Advanced Features

349

TypeScript
usagePage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage page for a usage or usage range.

reportID

TypeScript
reportID: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the report ID of the HID report that contains the usage or usage range.

isAlias

TypeScript
isAlias: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Indicates, if true, that a button has a set of aliased usages. Otherwise, if isAlias is false, the button has
only one usage.

bitField

TypeScript
bitField: number;

C#
// This property is not available in managed environment

Device Monitoring Studio Documentation Advanced Features

350

C++
// This property is not available in native environment

Description

Contains the data fields (one or two bytes) associated with an input, output, or feature main item.

linkCollection

TypeScript
linkCollection: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the index of the link collection in a top-level collection's link collection array that contains the
usage or usage range. If linkCollection is zero, the usage or usage range is contained in the top-level
collection.

linkUsage

TypeScript
linkUsage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies the usage of the link collection that contains the usage or usage range. If linkCollection is
zero, linkUsage specifies the usage of the top-level collection.

linkUsagePage

TypeScript
linkUsagePage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Device Monitoring Studio Documentation Advanced Features

351

Description

Specifies the usage page of the link collection that contains the usage or usage range. If linkCollection
is zero, linkUsagePage specifies the usage page of the top-level collection.

isAbsolute

TypeScript
isAbsolute: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Specifies, if true, that the button usage or usage range provides absolute data. Otherwise, if isAbsolute
is false, the button data is the change in state from the previous value.

usage

TypeScript
usage: IHIDValue;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Usage.

string

TypeScript
string: IHIDValue;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

String descriptor.

Device Monitoring Studio Documentation Advanced Features

352

designator

TypeScript
designator: IHIDValue;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Designator.

dataIndex

TypeScript
dataIndex: IHIDValue;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Data index.

IHIDValue

IHIDUsageAndPage Interface

Description

This interface is implemented by HID usage result object.

Declaration

TypeScript
interface IHIDUsageAndPage {
 // Properties
 usagePage: number;
 usage: number;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

Device Monitoring Studio Documentation Advanced Features

353

IHIDUsageAndPage Properties

usagePage

TypeScript
usagePage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Usage page.

usage

TypeScript
usage: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Usage value.

TypeScript

Starting from version 7.13, Device Monitoring Studio allows you to use TypeScript for user scripts.
TypeScript is an open-source programming language, created by Microsoft which is based on new
standard of EcmaScript and is a superset of JavaScript. Starting from version 7.70 TypeScript is always
used.

It provides syntax sugar to simplify defining classes, interfaces, lambda functions and so on. Strong type
checking is helpful for finding and fixing bugs before even running user scripts.

Version 7.25 upgrades the built-in TypeScript compiler to version 1.5.

Version 7.70 upgrades the built-in TypeScript compiler to version 1.8.10.

Syntax Check

Device Monitoring Studio internally has TypeScript declarations for all supported objects, their
properties and methods. This allows automatic syntax and type check when user script is launched.

License

Device Monitoring Studio Documentation Advanced Features

354

http://typescriptlang.org/

This product uses the open-source software TypeScript language from Microsoft. The product license is
provided below and is also available on-line on project web-site.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an
example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition,
“submitted” means any form of electronic, verbal, or written communication sent to the Licensor or
its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor
for the purpose of discussing and improving the Work, but excluding communication that is
conspicuously marked or otherwise designated in writing by the copyright owner as “Not a
Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

Device Monitoring Studio Documentation Advanced Features

355

http://typescriptlang.org/
http://www.apache.org/licenses/

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License; and

You must cause any modified files to carry prominent notices stating that You changed the files; and

You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works that
You distribute must include a readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file distributed as part of the Derivative
Works; within the Source form or documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying the License. You may add Your own
copyright statement to Your modifications and may provide additional or different license terms
and conditions for use, reproduction, or distribution of Your modifications, or for any such
Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions
of this License, without any additional terms or conditions. Notwithstanding the above, nothing
herein shall supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the

Device Monitoring Studio Documentation Advanced Features

356

appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of
any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Monaco Editor

License

This product uses the open-source software Monaco Editor from Microsoft. The product license is
provided below and is also available on-line on project web-site.

The MIT License (MIT)

Copyright (c) 2016 Microsoft Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Device Monitoring Studio Documentation Advanced Features

357

https://github.com/Microsoft/monaco-editor

Remote Monitoring
Device Monitoring Studio supports an infrastructure for remote monitoring of serial and USB devices1. A
running instance of Device Monitoring Studio may establish a connection to Device Monitoring Studio
Server installed on a remote server, obtain a list of server's serial and USB devices and start a monitoring
session for any supported device.

Remote Source provides this support inside Device Monitoring Studio, while Device Monitoring Studio
Server, installed on a remote computer, “shares” serial and USB devices, locally connected to that
computer.

Network Setup

DMS establishes a TCP connection to a server. Server may be configured to listen on specific local
endpoints (address and port), or on all local interfaces. Network administrator must ensure that
incoming connections are allowed for the configured endpoints. You can find more information in the
Server Configuration topic.

Server Deployment

Device Monitoring Studio Server is available as a stand-alone package. It includes serial and USB
monitoring components (which may be installed individually), server executable (capable of running as
stand-alone process or installed as Windows Service) and server configuration utility.

More information on server installation and supported deployment scenarios can be found in the
corresponding topic.

1. This feature is not available in all product editions.↩

Connect Server Window
This window allows you to connect to a Device Monitoring Studio Server running on a remote computer.

Specify the address of a remote server. Use one of the following supported syntaxes:

servername

Name of the remote server.
servername:port

Name of the remote server and TCP port to use for connection.

Device Monitoring Studio Documentation Remote Monitoring

358

ipv4

IPv4 address of a remote server.
ipv4:port

IPv4 address and TCP port of a remote server.
ipv6

IPv6 address of a remote server.
[ipv6]:port

IPv6 address and TCP port of a remote server.

You can also press the … browse button to select the computer.

Device Monitoring Studio also displays a list of servers it auto-discovers on a local network. If server's
advertisement is enabled and network is configured properly, its address will appear in a list.

Provide an optional access token if the server you are connecting to is configured with token-based
access control.

Device Monitoring Studio Server
Device Monitoring Studio Server is a stand-alone package that can be installed on a PC to share its local
serial and USB devices over the network. Once installed and configured, server handles monitoring
requests from remote instances of Device Monitoring Studio.

Downloading Device Monitoring Studio Server

You can download Device Monitoring Studio Server from HHD Software Ltd. web site:

Download Server

The server installation package consists of the following components:

Main server executable
Contains server code. May be launched as a stand-alone process or installed as Windows Service
(default mode).

Server configuration utility
While server reads its configuration from a simple JSON file, this configuration utility provides a
visual way to edit the configuration file.

Serial monitoring components
A number of components that enable monitoring of serial devices.

USB monitoring components
A number of components that enable monitoring of USB devices.

Network Configuration

By default, Device Monitoring Studio Server's installer adds an exclusion to the Windows Firewall during
installation (this option may be switched off). In more complex network setups, network administrator
must ensure incoming connections to the server executable are allowed.

Interoperability with Device Monitoring Studio

Device Monitoring Studio Server cannot be installed side-by-side with Device Monitoring Studio (and
vice versa). However, starting with version 9.12, Device Monitoring Studio installer contains an optional

Device Monitoring Studio Documentation Remote Monitoring

359

https://hhdsoftware.com/dispatch/dms9/download-server-from-doc

server component.

By default, server is not installed as Windows Service and instead may be run on demand.

Installation

Device Monitoring Studio Server must be installed on a computer in order to allow its local serial and
USB devices to be monitored from remote instances of Device Monitoring Studio. An administrator
access is required to install Device Monitoring Studio Server.

Device Monitoring Studio Server is available to download from HHD Software Ltd. web site:

Download Server

The server installation package consists of the following features:

Main server executable
Contains server code. May be launched as a stand-alone process or installed as Windows Service
(default mode). This feature is required.

Server configuration utility
While server reads its configuration from a simple JSON file, this configuration utility provides a
visual way to edit the configuration file. This feature is checked by default.

Serial monitoring components
This feature includes a number of components that enable monitoring of serial devices. This
component is checked by default.

USB monitoring components
This feature includes a number of components that enable monitoring of USB devices. This feature
is checked by default.

Install as Windows Service
If checked, setup installs server as Windows Service. The service is running every time the system
starts (under Local System account), no matter if the user logs in or not. If not checked, the server
may still be manually launched. This feature is checked by default.

Add Windows Firewall exception
If checked, a new “Allow” rule is added to Windows Firewall, allowing all incoming connections to
server's listening endpoints. This feature is checked by default.

Disable anonymous access
If checked, server disables anonymous access. Use the server configuration file or Server
Configuration Utility to explicitly set up server security. If unchecked, server allows anonymous
connections. This feature is unchecked by default.

Server cannot be installed on the same computer where Device Monitoring Studio is already installed. If
you need to share serial and USB devices on a computer with Device Monitoring Studio installed, use the
optional server component, available in Device Monitoring Studio installer.

If server is installed as part of Device Monitoring Studio, it is not installed as Windows Service by default.

Server Security

Device Monitoring Studio Server supports two basic security settings: anonymous access and token-
based access.

Anonymous Access

Device Monitoring Studio Documentation Remote Monitoring

360

https://hhdsoftware.com/dispatch/dms9/download-server-from-doc

In this mode (which is the default), server accepts all incoming connections and allows monitoring of all
its devices. This mode is only recommended in a fully controlled network environment, for example, in a
local network in a lab.

Token-Based Access

In this mode, server administrator needs to create a number of access tokens and optionally provide a list
of devices each access token is allowed to monitor. Access token is any unique string which must be
passed by a connecting client.

If client does not pass an access token or passed access token is not found on the server, it is refused
connection. If the device the client wants to monitor is not explicitly allowed for his access token, the
client receives an “access denied” error.

Server security is configured in server configuration file and may also be configured using Server
Configuration Utility.

Configuration Utility

This stand-alone utility provides a visual way to configure Device Monitoring Studio Server. It is basically
a visual editor for server configuration file (config.json).

Status
This field shows the current status of server if installed as Windows Service.

Install
Installs Device Monitoring Studio Server as Windows Service.

Remove
Uninstalls Device Monitoring Studio Server as Windows Service.

Start
Starts the service.

Stop
Stops the service.

Log file path
The full path to the log file. Supports environment strings (enclosed in %). Note that the server will
fail to start if it cannot obtain write access to the file.

Logging level
Logging level. Higher level produces more messages and includes all messages from all lower levels.

Device Monitoring Studio Documentation Remote Monitoring

361

The following logging levels are supported (from lowest to highest):
Level Description
Critical Only critical error messages are included
Error All error messages are included
Warning Warning messages are included
Informational Informational messages are included
Debug All messages are included

Default TCP port
The port to use if a given endpoint misses port specification.

Listen on
A comma-separated list of local endpoints the server listens on. The server supports the following
endpoint syntaxes:

hostname

Any local hostname that the server will try to resolve. Must refer to one of the local network
adapters.

hostname:port

The same as before, but explicitly specifies TCP port.
ipv4

A local IPv4 address.
ipv4:port

A local IPv4 address and TCP port.
ipv6

A local IPv6 address.
[ipv6]:port

A local IPv6 address and TCP port. Note that IPv6 address must be enclosed in square brackets
if it is followed by a port number.

* or empty string
Use all local addresses. This is the default setting.

*:port

Use a specific TCP port on all local addresses.

Access control
Select whether server allows anonymous access or requires token-based access.

Configure…
Press to configure token-based access control.

Advertise server on local networks
If enabled, the server will advertise itself on local networks. Please note that server advertisement is
subject to network configuration. If the client does not see a server with advertisement turned on, it
still may successfully connect to it using direct address.

Advanced
Launches external editor to directly edit config.json file.

Launch Standalone

Device Monitoring Studio Documentation Remote Monitoring

362

If server is not currently installed as Windows Service and is not running, launches an instance of a
server as a standalone process.

Token-Based Access Control Editor

This window is displayed when you press the Configure… button.

The top part of the window allows you to manage a list of access tokens. Click the Create button to
create new access token, Delete button to delete selected token and Delete All button to delete all
access tokens.

When token is selected, you can choose if it allows all devices to be monitored or only a subset of server
devices. Internally, the allowed device list is configured using device hardware IDs. You can either check
corresponding devices in a list or enter hardware IDs manually.

Server Configuration File Reference

Device Monitoring Studio Server reads its configuration from the config.json file located in the same
folder as dmssrv.exe server executable (unless overridden by --config command-line parameter).

This topic describes the structure of the configuration file. Device Monitoring Studio Server
Configuration Utility may also be used as a visual editor of the configuration file.

NOTE
JSON file format does not support comments. If you use // or /* ... */ comments in a
configuration file, server will treat it as malformed and will refuse to start.

WARNING

Device Monitoring Studio Documentation Remote Monitoring

363

Any configuration file syntax error is considered a critical error.

JSON File Structure

We will describe the JSON file structure by means of a TypeScript declaration:

TypeScript
interface AccessToken
{
 // A list of hardware IDs this token is allowed to monitor.
 // An empty list means that all devices are allowed
 allowedHardwareIds?: string[];
}

const enum MessageLevel
{
 Critical, // 0
 Error, // 1
 Warning, // 2
 Informational, // 3
 Debug, // 4
}

interface Config
{
 // Full path to log file. Default value is "%PROGRAMDATA%\HHD Software\Device Monitoring
Studio Server\dmssrv.log"
 logPath?: string = "%PROGRAMDATA%\\HHD Software\\Device Monitoring Studio
Server\\dmssrv.log";

 // Logging level, specified as number. Default value is 3 (Informational)
 logLevel?: MessageLevel = 3;

 // Comma-separated list of local endpoints, see below. Default value is an empty string
 listenEndpoints?: string = "";

 // default TCP port. Default value is 6612
 defaultListeningPort?: number = 6612;

 // A list of access tokens. Default value is an empty array
 authKeys?: AccessToken[] = [];

 // Enable server advertisement. Default value is true
 advertise?: boolean = true;

 // Enable anonymous access. Default value is true
 allowAnonymous?: boolean = true;
};

All configuration parameters are optional and provide reasonable defaults if omitted.

Endpoint Syntax

listenEndpoints parameter is a comma-separated list of local endpoints the server listens on. The server
supports the following endpoint syntaxes:

hostname

Any local hostname that the server will try to resolve. Must refer to one of the local network
adapters.

hostname:port

The same as before, but explicitly specifies TCP port.
ipv4

A local IPv4 address.

Device Monitoring Studio Documentation Remote Monitoring

364

ipv4:port

A local IPv4 address and TCP port.
ipv6

A local IPv6 address.
[ipv6]:port

A local IPv6 address and TCP port. Note that IPv6 address must be enclosed in square brackets if it
is followed by a port number.

* or empty string
Use all local addresses. This is the default setting.

*:port

Use a specific TCP port on all local addresses.

Server Configuration

The server reads configuration file only on startup. If you modify the configuration file, make sure the
server is restarted to pick up the changes.

Server Command-Line Reference

The dmssrv.exe server executable supports the following command-line parameters:

Device Monitoring Studio Documentation Remote Monitoring

365

Parameter Value Description
-?, --help Displays the list of supported parameters

with short description.
--nologo Do not display the logo message.
-config , --config path Full path to the JSON config file. If

omitted, config.json from the server
startup folder is used.

Logging
--log-path path Write server log to the specified file.
--log-level LOGGING-LEVEL

Set logging level to one of the following:

critical
only critical errors

error
all errors

warnings
errors and warnings

info
informational messages |

debug
maximum information for
debugging

--no-screen-log Do not display a copy of log to the
console.

Service operations
-install-service , --install-service Install server as Windows Service.
-uninstall-service ,
--uninstall-service

Uninstall service.

Device Monitoring Studio Documentation Remote Monitoring

366

User Interface
Notification Windows
Notification Windows are used to pay user's attention to any activity in the Device Monitoring Studio.
Each notification window displays important information about the current state of the application.

You can control the time each notification window is displayed in Tools » Settings, General Tab - see
Display notification window for N seconds option.

You can also control if you want to display specific notification window in Tools » Settings, General Tab
or directly in the displayed notification window.

Available Notifications

Click on the item below to see the description of specific notification window:

Next Connected Device (Serial)
Next Connected Device (USB)
Line View Notification
New Terminal Session
Continue playback
Statistics Special Mode
Statistics Static Line
Fast data entering (MODBUS Send window)

Next Connected Device (Serial)

This notification window briefly lists actions you need to perform to work with the “Next Connected
Device” session type. Plug in the PnP-compliant serial device you want to monitor to start receiving data
for the monitoring session.

Next Connected Device (USB)

This notification window briefly lists actions you need to perform to work with the “Next Connected
Device” session type. Plug in the USB device you want to monitor to continue the monitoring session.

Line View Notification

Line View visualizer is different from other visualizers in that it does not open a visualizer window.
Instead, it adds the line state signals to the application scrollbar. If you have multiple running monitoring
sessions, it displays the line states for the currently active session.

This notification informs you about the location of the Line View visualizer you added to the monitoring
session.

New Terminal Session

To create new serial terminal session, click the button the notification points to, or use the Tools » Serial
Terminal » New Terminal Session command.

Continue Playback

This notification window shows you the location of the Next button, which you can use to continue
paused log file playback. This button can also be used to skip the long delay in the monitored data.

Statistics Special Mode

Device Monitoring Studio Documentation User Interface

367

This notification is displayed when you start the Statistics visualizer and tells you that Special Mode is
available for high-speed monitoring (Only the Statistics visualizer must be configured for the session to
activate this mode).

Statistics Static Line

This notification window is displayed when you click on the plot area of the Statistics visualizer and tells
you that you can also click while holding a Ctrl key to place another kind of value tracking line.

Fast data entering (MODBUS Send window)

This notification tells you that the fast data entering mode is currently active.

Commands
All functions of the Device Monitoring Studio are invoked through commands. For convenience, almost
every command is accessible using several user interface tools:

Each command is accessible through the main menu. Several commands used to execute local
actions of specific tool windows are accessible through context, or shortcut menu. Shortcut menu is
invoked by clicking the right mouse button, or by pressing “Context Menu” keyboard button
(usually located next to the right Ctrl key).

Most commands are also displayed on toolbars. Two kinds of toolbars are used in the Device
Monitoring Studio. Main toolbar is located right under the menu bar and is fully customizable. You
can also create new toolbars and place them near the menu bar. Other toolbars, which are not
customizable, are located in tool windows and contain the most used commands that are specific
for those tool windows.

Several most used commands have associated keyboard shortcuts or hot keys. Pressing such
associated key or key combination invokes the command. You can change assigned key
combinations as well as assign new key combinations to other commands.

All commands described in this documentation are mentioned by their location in the main menu. For
example, the “Open…” command, located under the File main menu item is referenced as File » Open….
Other examples are File » Exit for an “Exit” command under File menu and Tools » Settings… for a
“Settings…” command under Tools menu.

By convention, if ellipsis symbol (…) terminates menu item's name, it means that user is required to
provide additional information to execute this command. This may include displaying a dialog box,
asking for confirmation etc. For example, the File » Exit command does not require any additional
action from you, while the File » Open… command opens a File Open dialog, therefore requiring you to
provide additional information.

Menus
Main menu bar is located at the top of application window, right under the title bar.

Main menu contains almost all commands implemented by the Device Monitoring Studio. It is
structurally divided into the following groups:

File

Device Monitoring Studio Documentation User Interface

368

Contains commands related to working with workspaces.
Edit

Contains all editing commands and Clipboard commands.
View

Contains the list of tool windows, commands to export/import tool window configuration or load a
predefined configuration.

Bridge
Contains commands related to Serial Bridge.

Tools
Contains generic commands that control different tool windows, as well as a current monitoring
session. The Tools » Settings… command is an entrance to the central place where you fine-tune
the Device Monitoring Studio by changing different options.

Scripting
Contains scripting-related commands.

Window
Contains commands that manage the number and location of editor windows.

Help
Contains commands that can be used to access this documentation file, check for program updates,
display keyboard map (a table of associated shortcuts) as well as display information about the
Device Monitoring Studio.

Toolbars
Toolbars present a subset of Device Monitoring Studio's commands to the user by means of displaying
commands' images. Main toolbar and user created toolbars are located under the menu bar:

To execute a command located on the toolbar left-click its image. If you hold a mouse pointer over an
image for a while, command's name is displayed in a tooltip window, along with assigned keyboard
shortcuts. More detailed command description is displayed on the status bar at the same time.

Main toolbar, as well as user-defined toolbars, are fully customizable. You can quickly change the order
of commands on the toolbar using the following procedure:

1. Press and hold an Alt key.
2. Locate the mouse cursor over the command you want to move to another location.
3. Press the left mouse button.
4. Drag mouse to another location and see how the command moves within the toolbar.
5. Release a left mouse button to “drop” a command on its new location. Release an Alt key as well. If

you moved mouse away from the toolbar, the command is removed from the toolbar.

You can also create toolbar separators using this procedure.

Advanced toolbar customization is described in the Toolbar Customization topic. For example, in
addition to command arrangement you can smoothly change the size of toolbar images.

Toolbars located in tool windows are not customizable and contain commands related to the tool
window where they are located.

Device Monitoring Studio Documentation User Interface

369

Keyboard Shortcuts
Device Monitoring Studio associates a number of its commands with keyboard shortcuts. You can always
see the list of all currently assigned shortcuts using the Help » Keyboard Map command. The list of
assigned shortcuts may also be printed for reference or copied to the Clipboard to be used in another
application.

Keyboard Customization section illustrates how you can change default keyboard shortcuts or create
your own.

Tool Windows
Tool windows are a special-purpose windows that are always visible to the user (unless they are hidden)
and always ready to perform a task. The following Device Monitoring Studio features and functions are
implemented as tool windows:

Devices Tool Window
Sessions Tool Window
USB Device Descriptor
USB Configuration Descriptor
USB HID Descriptor
USB Dependent Devices
Serial Device Information
Packet Builder
MODBUS Send

Location

A tool window either may be floating or docked to the application frame. A docked tool window may
also be auto-hidden. All these terms are described later in this section.

Floating Tool Window

Floating tool window is convenient when you want to maximize the working space used by data
visualizers. It may be positioned outside of the main application window, and may even be located on
another monitor if you have one. This is contrary to the docked tool window, which may only be located
within application window.

The position of the floating tool window may be changed by dragging it by its title with a mouse. You
can also use mouse to change the size of the floating tool window by dragging either its frame or one of
four corners.

The important thing to have in mind while working with floating tool windows is the keyboard focus.
Operating system directs all keyboard input to the window owning keyboard focus. Usually an active title

Device Monitoring Studio Documentation User Interface

370

is used to indicate the window that has keyboard focus. Blinking caret may also be used to indicate the
focused window. Activating floating tool window by a mouse click always brings a keyboard focus to this
window, allowing you to provide input to the window. Clicking outside of the floating tool window
usually takes a keyboard focus away from it. To continue sending keyboard input to the tool window,
you may need to activate it again.

Docked Tool Window

A tool window may also be docked. When docked, it is attached to a tool window frame. A frame may be
attached next to another frame or directly to the top, left, right or bottom side of application window.
Frames may be located next to each other, inserted one into another and merged. Each frame contains
at least one docked tool window and may contain several. Below is a screenshot of a frame with a single
tool window docked to the right side of application window:

You can dock any tool window by dragging it by its title bar or tab. During dragging, special
placeholders appear on the screen. When you move the mouse pointer over the placeholder, semi-
transparent rectangle appears on the screen, indicating an approximate position of the docked window.
Releasing the mouse button docks a window in the indicated position.

Side placeholders always appear, allowing you to dock a tool window into a new frame and attach it to
the top, left, right or bottom side of the application window.

When you drag a window over a docked frame or over the workspace area, another placeholder
appears. It is composed of five boxes: top, left, middle, right and bottom. Dragging a window over the
side box docks the window into a new frame, which is attached to the top, left, right or bottom of the
frame currently under mouse pointer.

Device Monitoring Studio Documentation User Interface

371

If you drop a window to the middle box, you will dock it into the frame currently under mouse pointer.
Dropping a window to the docked window's title also docks it to target window's frame.

You can use mouse to change position of docked windows within a docked frame, as well as drag the
window “out of the frame” to make it floating or to dock it into another frame or new frame.

Double-clicking on the docked frame's title makes a frame floating. Double-clicking on the docked
window's tab makes only that window floating. Double-clicking on the floating frame's title docks it back
to the same location it previously occupied.

All docked frames are separated with each other by splitters. When you position a mouse pointer over
such splitter, it changes its shape, telling you that you can drag the splitter to change size of adjoining
frames. Splitter position is proportional to the application window size; frames are resized automatically
and proportionally when you resize application window.

Auto-Hidden Tool Windows

Any docked tool window frame may be auto-hidden. To auto hide a frame, click the Auto Hide button:

Four auto-hide bars are located on four application window sides. They are hidden when empty and
appear as soon as you add at least one frame to it. When you auto-hide a docked frame, it chooses one
of four auto-hide bars, depending on the docked position. That is, if the frame was docked closer to the
right side of application window, right auto-hide bar is chosen and so on.

Each docked window's tab in the auto-hidden frame is displayed on the auto-hide bar. Two auto-hidden

Device Monitoring Studio Documentation User Interface

372

frames are separated from each other with a slightly larger gap. Dragging mouse over the tab opens
corresponding tool window. The tool window smoothly drives out of the auto-hide bar. Click in the tool
window to switch keyboard focus to it if you need to provide any keyboard input to the window. The
window is automatically closed (quickly drives back into the auto-hide bar) when keyboard focus is lost
by the window and mouse cursor is not over it.

Auto hiding tool windows allow you to save the screen space, while still having quick access to
functionality provided by the tool windows.

Pressing Auto Hide button again “unhides” the docked frame and returns it to its original docked
position.

Tool Window Visibility

Any tool window is always in one of two states: visible or hidden. Visible means the tool window is
floating or docked to any of the docked frames or auto-hidden and appears on one of four auto-hide
bars. Hidden tool window does not appear anywhere on the screen. Note that a tool window, which is
not directly visible by the user, but which tab is visible in one of the docked frame, considered visible by
this definition.

Pressing the Close button hides the tool window or entire frame, depending on the “Close affects the
current tool window only” setting on the General settings page. To make a previously hidden window
visible, select its name in the View menu. This restores the previous position, docked and auto-hidden
state of the window and activates it. It also activates the tool window even if it is in visible state,
therefore, allows you to quickly move keyboard focus to the tool window, without using mouse.

Window Switching
Device Monitoring Studio interface presents you with a large number of tool windows, as well as an
unlimited number of data visualizer windows. Navigation Window - a convenient window switching
mechanism is provided for you.

Navigation window is opened when you press the Ctrl + Tab or Ctrl + Shift + Tab key combination
(see also Keyboard Customization). It lists all visible (possibly auto-hidden) tool windows as well as all
opened editor windows. Using the arrow keys, Tab, Shift + Tab or mouse, you may select the window
you want to activate. As soon as you release a Ctrl key, the navigation window is closed and selected
window becomes active.

Navigation window provides a quick window activation mechanism.

Workspace

Device Monitoring Studio Documentation User Interface

373

A workspace is full application configuration that includes the following:

1. A state and configuration of all running monitoring sessions. This configuration includes monitoring
devices, data visualizers, exporters and window locations.

2. Current tool window configuration.
3. Serial Terminal sessions.
4. Scripting configuration.
5. Packet Builder configuration.

You may control the inclusion of some of these components into workspaces on the Tools » Settings,
General Tab.

Working with Workspaces

A current application configuration may be saved to a workspace file using the File » Save Workspace
or File » Save Workspace As… commands.

An existing workspace may be loaded using the File » Open… command.

Global Switch
Device Monitoring Studio consists of three main components: Network, Serial and USB. While three
separate installers are available for download, which install only corresponding components, a single
“all-in-one” installer is also available.

If you have installed the complete Device Monitoring Studio, but usually (or always) work with a single
component, use the Global Switch to hide unneeded components:

Pressing the Network, Serial or USB buttons leaves only devices and windows that relates to selected
data type. Alternatively, click the All button to revert to default “all-in-one” configuration.

Device Monitoring Studio Documentation User Interface

374

Configuration
General Tab

This configuration page allows you to set up general application properties. All properties are organized
in the tree and can be either Boolean (on/off), selectable (one of) or numeric.

General Group

Display splash screen on startup
If enabled, a splash screen is displayed when Device Monitoring Studio is launched.

Foreground downloading
Device Monitoring Studio takes all available bandwidth when it downloads a new version.

Define tooltip interval
A number of millisecond a tooltip stays opened

Save tools configuration with workspace
If enabled, Tool window configuration (visibility and location) is saved into the workspace.

Last recently used workspaces to display
A number of last recently used workspaces to keep and display in the File menu.

Display notification window for (seconds)
A number of seconds a notification window is visible.

Close affects the current tool window only
If enabled and when close button is pressed on a stacked tool window frame, only the current tool
window is closed, otherwise, the entire frame is closed.

Restore main window position on startup

Device Monitoring Studio Documentation Configuration

375

If enabled, Device Monitoring Studio's main window position is automatically restored to its last
position.

Ask to save modified workspace
If enabled and the current workspace has been modified, a user is asked to save the changes before
closing Device Monitoring Studio.

Check for updates
Select how often Device Monitoring Studio checks whether a new version is available.

Join consequent requests
Automatically join consequent packets of the same type.

Notifications Group

This group contains the flags controlling the appearance of different notification windows.

Statistics Group

This group contains options related to Statistics visualizer.

Display sample indices on X-axis
Check this option to display the sample ordinal number on X-axis. Packet number and packet time
are always displayed.

Raw Data View

Display lowercase hexadecimal
If enabled, all hexadecimal numbers use lowercase letters, otherwise they use uppercase.

Display popup packet information
Display detailed packet information when mouse is hovered on top of packet data.

Network Packet View

Display popup packet information
Display detailed packet information when mouse is hovered on top of packet data.

MODBUS

These options are used to control the legacy MODBUS View data visualizer.

Truncate register/coil/request list if it is too long
Automatically limit the number of items displayed.

Add base offsets for registers, discrete inputs, etc.
TBD

Parse requests on WRITE (responses on READ) direction
If enabled, MODBUS View data visualizer treats the current monitoring session as MODBUS Master,
otherwise, it treats it as MODBUS Slave.

Concatenate packets
Automatically join split MODBUS packets.

RTU mode
If enabled, treat the current monitoring session as MODBUS RTU mode, otherwise treat it as

Device Monitoring Studio Documentation Configuration

376

MODBUS ASCII mode.
Parse as hex

Display all numbers in hexadecimal format.

Console View

This section contains options for Legacy Console View data visualizer.

Display line numbers
If enabled, line numbers are displayed in the data visualizer.

Scripting

Reload scripts on startup
If enabled, Device MMonitoring Studio automatically opens all previously opened script files.

Ask to save unsaved scripts on close
If enabled and there are unsaved scripts, a prompt is displayed to save the changes.

Include scripting configuration into workspace
If enabled, all opened scripts are saved into the workspace.

Serial Terminal

Include terminal configuration into workspace
If enabled, all running [terminal sessions] are saved into the workspace.

Send text lines from file one by one
If enabled, a text file is split into lines and they are subsequently sent to the serial session one by
one. Otherwise, the entire text file is sent at once.

Convert tab characters to N spaces
If not equals to zero, tab characters are replaced with a given number of space characters when TAB
key is pressed in Serial Terminal Window.

Data block size
A size of the buffer (in bytes) to use in serial terminal session.

USB Audio Visualizer

Treat requests as Audio Control (AC) requests
If enabled, requests are treated like Audio Control (AC) requests. Otherwise, they are treated like
Audio Stream (AS) requests.

USB Video Visualizer

Treat requests as Video Control (VC) requests
If enabled, requests are treated like Video Control (VC) requests. Otherwise, they are treated like
Video Stream (VS) requests.

PPP View

Sequence number (Multilink protocol) field in short form (12 bit)
Parse sequence number (Multilink protocol) field in short form (12 bit) if option is enabled,
otherwise parse it in long form (24 bit).

Device Monitoring Studio Documentation Configuration

377

Truncate record list if it is too long
Limit the number of records in the list.

FCS field of PPP frame is 2 bytes long
If enabled, FCS field of PPP frame is 2 bytes long, otherwise it is 4 bytes long.

Address
Set to the device address to automatically do address checking or any number higher than 255 to
disable it.

Number of packets to scan back
A number of packets PPP View looks back in search for a starting packet.

Auto-Hide

Hover time (ms)
A number of milliseconds a mouse needs to be hovered over auto-hidden tool window to open it.

Close time (ms)
A number of milliseconds a tool window stays visible until it closes after the mouse leaves.

Multi-Source Device Colors Tab

Use this configuration window to set up device colors for multi-source monitoring session. Different
colors help you distinguish a packet captured from one device from another.

Select a device on the left and use the Background color control to select the color. Use the Reset
button to restore the default configuration.

Recording/Playback Tab
This page allows you to specify options for the Data Recording and Playback modules. Here you enter

Device Monitoring Studio Documentation Configuration

378

the full path to the folder used to store the recorded log files and set the compression option.

Note that setting the compression option will slow down the recording. Do not use Compression when
recording high-speed communications. Compression is NTFS compression and will work only on NTFS-
formatted volumes.

This window also allows you to specify separate folder where Playback data source will look for log files
to be shown in Devices Tool Window. It is recommended to have these paths to point to the same
folder.

Data Processing Tab

The application uses the disk space to store temporary monitored data. It can be configured to place its
temporary files on any available volume and configured to take as much free space as you want. Note
that if the application becomes short of temporary storage, it starts deleting the oldest data, resulting in
the removed data is not available for visualizers anymore.

Configuring Device Monitoring Studio Data Processing Policy

There can be set two major policies for data processing. See the information below to properly choose
the data policy you need:

1. Display as much as you can. Set each available volume to allow as much space as you can. In this
mode, the entire monitoring session will always be available for any visualizer you configure for your
monitoring session. You will always be able to scroll to any location and see the packets monitored
at any time.

2. Consume as less space as possible. Set all but one volumes to “Don't use” and one volume to a small
value. This will make the Device Monitoring Studio to reuse the available space as soon as possible.
Use this scenario if you are interested in recent monitored data only.

If you change data policy settings, it will immediately affect any new monitoring sessions you create.

Device Monitoring Studio Documentation Configuration

379

When you close the monitoring session, all used disk space is freed.

Temporary Storage

The system creates a hidden folder $DMSTEMP$ on each configured volume where it creates its temporary
files. When the monitoring session is closed, all files are automatically deleted. The hidden folder may
remain until the application is closed. In case of unexpected shutdown, it is always safe to remove the
folder manually.

In order to increase throughput, Device Monitoring Studio interleaves its access to different volumes. If
multiple volumes refer to the same physical disk, you may increase throughput by disabling all but one
volumes of that disk.

High-Performance Mode

When monitoring session runs with data processing modules that do not require history (like Statistics,
Data Recording, Raw Exporter or Text Exporter), a special high-performance mode is enabled. In this case,
Device Monitoring Studio will not use temporary storage to store session's data.

Commands Tab

This page lets you configure the toolbars. You see the list of available commands (that can be filtered by
specifying Category) and the list of toolbars.

Creating New Toolbar

To create a toolbar, press the New… button. Enter the toolbar's name. The created toolbar is empty.
Add new commands to it.

Deleting Toolbar

To delete a toolbar, select it in the list and click the Delete button.

Device Monitoring Studio Documentation Configuration

380

Configuring a Toolbar

To remove a button from the toolbar, click on it and drag away from the toolbar.
To move a button to another location, click and drag it.
To add a button to a toolbar, click on the command in the Commands list and drag it to the toolbar.

Other Options

Hide a toolbar by unchecking the box next to its name in the Toolbars list. Change the size of the toolbar
icons with the Button Size control. The Device Monitoring Studio's unique vector icon technology
renders command icons at any size without artifacts.

Keyboard Tab

This page lets you configure the keyboard shortcuts. You see the list of available commands (that can be
filtered by specifying Category) and the list of assigned key combinations.

Select the command in a list to view its current combinations. Delete existing combinations by selecting
them in a list and pressing the Delete button. Type new combinations and assign them to the selected
command.

Press the Keyboard Map button to bring up the keyboard map (also available through Help »
Keyboard Map command of currently assigned shortcuts.

Keyboard Map

Device Monitoring Studio Documentation Configuration

381

This window displays current association between the Device Monitoring Studio commands and
keyboard shortcuts. You may select a subset of the items in a list and copy them to the Clipboard, or
Print. If there is no selection, the entire window is copied or printed.

Proxy Tab
This page allows you to configure the proxy server used by features Check for Updates and
Downloader. In most cases, you don't need to make any changes, as defaults will work on majority of
installations.

When Device Monitoring Studio establishes a connection to remote server, it always does it over HTTP
protocol over the 80 port. If your computer must use HTTP proxy when accessing HTTP resources, you
may configure the proxy settings on this page. In addition, if your proxy server requires authentication,
you may also configure credentials to use.

Device Monitoring Studio Documentation Configuration

382

Server Settings

There are four options you can use to configure a proxy server:

Default
Application will use the proxy server configured in your default browser. This is a default setting.

Auto-detect proxy settings
Application will try to automatically detect proxy server settings.

Do not use proxy
Device Monitoring Studio will bypass any configured proxy.

Use the following proxy (HTTP):
Specify the address (and optionally port number) of the proxy server to use. Examples:

myserver.com

will use the HTTP proxy server myserver.com on port 80 (the default).

myserver.com:8080

will use the HTTP proxy server myserver.com on port 8080

Proxy Server Authentication

There are three authentication options you can use:

Authentication is not required
Proxy Server does not require authentication.

Authenticate me as logged on user

Device Monitoring Studio Documentation Configuration

383

Device Monitoring Studio will use the currently logged-on user to authenticate on the proxy server.
Authenticate me with the following credentials:

Enter the user name and password. You must enter the same password in both Password and Re-
type password boxes. See the Security Considerations section below.

Security Considerations

When you configure the Device Monitoring Studio to use the entered credentials, it stores entered
password in registry under the HKEY_CURRENT_USER key. It uses encryption to store the password. Only the
same user is able to decrypt the password.

That is, if encrypted password is copied to another computer, an attacker will not be able to get the plain
text password.

Device Monitoring Studio Documentation Configuration

384

	Table of Contents
	Introduction
	Organization
	What's New in 9.12
	What's New in 9.01
	UI Refresh
	New and improved Data Visualizers
	ARM64 support
	Settings Manager
	Walkthroughs and tutorials for new users
	Breaking Changes

	What's New in 8.33
	What's New in 8.30
	What's New in 8.04
	What's New in 8.02
	Script Debugger
	New Serial Terminal
	Data Repeater
	Improved USB Descriptors Retrieval
	Custom View Visualizer
	Extended Scripting API

	What's New in 7.74
	What's New in 7.70
	What's New in 7.51
	New Features
	Fixed Bugs
	Memory Usage Optimizations
	Supported OSes

	What's New in 7.25
	Remote Monitoring
	Bridge Manager Scripting Object
	Updates to Serial Terminal Scripting
	Updated Typescript Version

	What's New in 7.17
	Updated Typescript Version

	What's New in 7.13
	Serial Device Parameters

	What's New in 7.05
	Technical Features and Improvements
	User Interface Improvements

	Monitoring Session Management
	Devices Tool Window
	Commands
	Context Menu

	Sessions Tool Window
	Session Configuration Window
	Selected Sources
	Configuration
	Time Measurement Mode
	Available Processing
	Favorites
	Selected Processing
	Capture Filter
	Scripting Support

	Device Types
	Network
	Multi-Source Support
	Process Matching
	Protocol Definitions

	USB
	Multi-Source Support
	Protocol Definitions

	Serial
	Multi-Source Support
	Protocol Definitions
	Serial Session Configuration
	Listening Mode

	Serial Bridge
	Generating Script
	Multi-Source Support
	Timeout Configuration
	Communications Mode

	Playback
	Starting Playback
	Playback Controls
	Managing Log Files
	Working with Log Files from Other Locations

	Multi-Source
	Multi-Source Session Creation
	Multi-Source Device Identification
	Unsupported Data Sources

	Remote
	Connecting to Remote Server
	Remote Monitoring Session
	Disconnecting from the Server
	Network-related Errors
	Server Configuration

	Import

	Data Processing
	Custom View
	Custom View Workflow
	Visualizer Host
	Accessing Fields of a Bound Packet
	Advanced Formatting
	Visualizer Host

	Samples
	User Experience

	Structure View
	Decoded Packet Contents
	Raw Data View
	Root Protocol
	Display Filter
	Operation

	Raw Data View
	Customization
	Navigation
	Pattern Coloring
	Advanced
	Selecting Data
	Exporting Data
	Searching for Data
	Go to Offset

	Regular Expressions
	Capturing Sub-expressions
	Usage Tips and Performance Considerations
	Regular Expressions Syntax
	Examples

	URB View
	Exporting Data

	Packet View
	Exporting Data

	Statistics
	USB
	Serial
	Network
	Advanced
	Adjusting Output
	Navigating
	Capturing the Plot Data

	Audio View
	Exporting Data

	Video View
	Exporting Data

	HID View
	HID View
	Report View
	Exporting Data

	Mass Storage View
	Supported Commands
	MMC
	SPC2
	RBC
	Exporting Data

	Still Image View
	Exporting Data

	Communications View
	Exporting Data

	Request View
	User Experience
	Visual Schemes
	Configurable Options
	Legacy Visualizer

	Console View
	Visual Schemes
	User Experience
	Legacy Visualizer

	Data View
	Serial Bridge
	Exporting Data

	MODBUS View
	Exporting Data

	PPP View
	Exporting Data

	Line View
	Visualizer Positioning

	Request View (Legacy)
	Exporting Data

	Console View (Legacy)
	HTTP View
	User Experience
	Visual Schemes

	Data Recording
	Log File Structure
	Unlimited Mode
	Limited Modes

	Configuring Data Recording
	Data Recording Options
	Save to Log

	Raw Exporter
	Configuring Raw Exporter
	Export Filter
	Root Protocol

	Text Exporter
	Configuring Text Exporter
	Export Filter
	Root Protocol

	Advanced
	Generic Coloring
	Coloring Tab
	Working with Schemes

	Data Recording (Previous version)
	Log File Structure
	Configuring Data Recording
	Configuring Recording Options

	Filtering
	Capture Filter
	Limitations
	Capture Filter Syntax
	Examples
	Serial Monitoring
	USB Monitoring
	Network Monitoring

	Generic Filtering (Legacy)
	Filtering Tab
	Working with Schemes
	Per-Visualizer Scheme Application

	Advanced Features
	Network Monitoring
	Packet Builder
	Packet Editing
	Sending Packets
	Saving and Loading Packets

	USB Monitoring
	Device Descriptor
	Displayed Information
	Parsing Identifiers

	Configuration Descriptor
	Displayed Information
	Parsing Identifiers

	Dependent Devices
	HID Descriptor
	HID Send
	Scripting Support

	Serial Monitoring
	Serial Device Information
	Displayed Information
	Compatibility Notes

	Custom Communication Mode
	Custom Splitter Code Structure

	Data Repeater
	Serial Terminal
	Integration with Serial Monitoring
	Scripting Support
	Session Configuration Window

	MODBUS Send
	Using MODBUS Send
	MODBUS Send with Serial Devices
	MODBUS Send with TCP Session (MODBUS TCP Protocol)

	MODBUS Session
	MODBUS Send with Serial Devices
	MODBUS Send over MODBUS TCP Protocol

	MODBUS Send Window Rollouts
	Generic Rollouts
	Request Rollouts
	Response Rollouts

	Protocols
	Protocol Binding Workflow
	Pre-installed Protocols
	Network Monitoring Protocols
	USB Monitoring Protocols
	Serial Monitoring Protocols

	Custom Protocols
	Predefined Fields
	Protocol Reference

	Protocol Editor
	Find
	Replace
	Go to Line
	Protocols List Tool Window
	Coloring
	Licenses

	Tutorials
	Adding New Protocol

	Language Reference
	Workflow
	Tokenization
	Comments
	Preprocessor
	Built-in Types
	Expressions
	Functions
	Statements
	Scopes
	Constants and Constant Arrays
	Variables and Variable Arrays
	Enumerations
	User-Defined Types
	Typedefs
	Directives
	Format String Syntax
	Errors

	Scripting
	Scripting System Changes
	Scripting in User Interface
	Working with Scripts
	Running Scripts
	Persistence
	Command Line Support

	Debugging Scripts
	Break State
	Stepping through the Code

	What Can I do with Scripting?
	Event Binding
	Scripting Site Object
	IScriptingSite Interface

	Monitoring Object
	Automatic Generation of Session Configuration Script
	IHost Interface

	Monitoring Session Object
	Adding Devices and Configuring Session
	Adding Visualizers
	Running Monitoring Session
	ISession Interface
	IVisualizer Interface
	Serial Namespace
	Playback Namespace
	Session Namespace
	Multi Namespace
	VisConfig Namespace
	DataRecording Namespace
	Exporters Namespace

	Serial Terminal Objects
	Serial Terminal Object
	Device Configuration Object
	Predefined Flow Control Object
	Reference

	Serial Terminal Session Object
	Configuring Terminal Session
	Starting and Stopping Terminal Session
	Sending Data
	Receiving Data
	Events
	Flow Control Emulation
	Reference

	Network Manager Object
	Reference

	TCP Session Object
	Asynchronous API
	Connecting a TCP Session
	Sending and Receiving Data
	ITcpSession Interface

	UDP Session Object
	Asynchronous API
	Starting and Stopping UDP Session
	Sending and Receiving Data
	IUdpSession Interface

	TCP Listener Object
	ITcpListener Interface

	MODBUS Manager Object
	IModbusManager Interface

	MODBUS Builder Object
	Creating MODBUS Builder Object
	Reference

	Remote Connection Manager Object
	Events
	IRemoteHost Interface

	Bridge Manager Object
	IBridgeHost Interface

	Bridge Object
	IBridge Interface

	File Manager Object
	Reference

	File Object
	IFile Interface

	HID Manager Object
	IHIDManager Interface

	HID Device Object
	IHIDDevice Interface

	HID Session Object
	Reference

	TypeScript
	Syntax Check
	License

	Monaco Editor
	License

	Remote Monitoring
	Network Setup
	Server Deployment
	Connect Server Window
	Device Monitoring Studio Server
	Downloading Device Monitoring Studio Server
	Network Configuration
	Interoperability with Device Monitoring Studio
	Installation
	Server Security
	Anonymous Access
	Token-Based Access

	Configuration Utility
	Token-Based Access Control Editor

	Server Configuration File Reference
	JSON File Structure
	Endpoint Syntax
	Server Configuration

	Server Command-Line Reference

	User Interface
	Notification Windows
	Available Notifications
	Next Connected Device (Serial)
	Next Connected Device (USB)
	Line View Notification
	New Terminal Session
	Continue Playback
	Statistics Special Mode
	Statistics Static Line
	Fast data entering (MODBUS Send window)

	Commands
	Menus
	Toolbars
	Keyboard Shortcuts
	Tool Windows
	Location
	Floating Tool Window
	Docked Tool Window
	Auto-Hidden Tool Windows

	Tool Window Visibility

	Window Switching
	Workspace
	Working with Workspaces

	Global Switch

	Configuration
	General Tab
	General Group
	Notifications Group
	Statistics Group
	Raw Data View
	Network Packet View
	MODBUS
	Console View
	Scripting
	Serial Terminal
	USB Audio Visualizer
	USB Video Visualizer
	PPP View
	Auto-Hide

	Multi-Source Device Colors Tab
	Recording/Playback Tab
	Data Processing Tab
	Configuring Device Monitoring Studio Data Processing Policy
	Temporary Storage
	High-Performance Mode

	Commands Tab
	Creating New Toolbar
	Deleting Toolbar
	Configuring a Toolbar
	Other Options

	Keyboard Tab
	Keyboard Map

	Proxy Tab
	Server Settings
	Proxy Server Authentication
	Security Considerations

