
1
4
4
4
6
6
6
7
7
8
8
8
9
9

10
10
10
10
10
11
11
11
12
12
12
12
13
13
13
13
14
14
14
15
15
15
16
16
16
16
17
17
17
17
18
18
18
18
19
19
19

Table of Contents
Table of Contents
Introduction

Installation
Activation

Administration
Management MMC Snap-In

Administration
General Page
Security Page

Management
Connection
Session

Scripting
Events

Reference
IMonitoringAdmin Interface

Declaration
IMonitoringAdmin Properties

AutoDiscover
Connections
ListenConnections
SecurityDescriptor

IMonitoringAdmin Methods
InstallLicense

IConnectionCollection Interface
Declaration
IConnectionCollection Properties

Count
Item

IConnection Interface
Declaration
IConnection Properties

Client64
Id
ProcessId
SessionId
Sessions
Source
Status
UserName

IConnection Methods
Drop
DropAllSessions
SendCustomMessage

ISessionCollection Interface
Declaration
ISessionCollection Properties

Count
Item

ISession Interface
Declaration

Device Monitoring Studio Server Documentation Table of Contents

1

20
20
20
21
21
21
21
22
22
22
22
23
23
23
23
23
24
24
24
25
25
25
25
25
26
26
26
26
27
27
27
27

ISession Properties
BytesTransferred
Connection
CreationTime
DataSource
Devices
Id
Status

ISession Methods
Drop
Pause
Resume

IDeviceCollection Interface
Declaration
IDeviceCollection Properties

Count
Item

IDevice Interface
Declaration
IDevice Properties

Key
Name

_IMonitoringAdminEvents Interface
Declaration
_IMonitoringAdminEvents Methods

OnConnectionAdded
OnConnectionRemoved

_IConnectionEvents Interface
Declaration
_IConnectionEvents Methods

OnSessionAdded
OnSessionRemoved

Device Monitoring Studio Server Documentation Table of Contents

2

Device Monitoring Studio Server Documentation Table of Contents

3

Introduction
Device Monitoring Studio Server is a software component that provides remote access to serial, USB and
network devices, connected to the computer.

A server consists of the following components:

Monitoring Modules
Monitoring modules are filter device drivers and source libraries that can be attached to any supported
device and provide the caller with a copy of transferred data and commands. Monitoring modules
include serial, USB and network.

Main Server Component
This component is installed as Windows Service, runs whenever the computer is running (a logged on
user is not required) and provides remote access to connected devices. This component is subject for
administration.

Administration MMC Snap-In
This is a standard MMC snap-in used to administer the server component.

API
Application programming interface, provided by main server component, allows administrators to use
such technologies as Windows Scripting Host and PowerShell to administer and manage the server.

Installation
Device Monitoring Studio Server is distributed as stand-alone installer and may be installed on any
supported version of Windows operating system.

A server may be installed on the same computer where the Device Monitoring Studio client is installed (in
this case the versions of DMS Client and DMS Server must match). Although, it is not recommended to use
remote connection to monitor local devices, as performance will be worse.

After installation, a server is immediately running (unless a restart is required to complete driver
installation). Server does not require any user to log in, as it is installed as Windows Service. When running,
a server is ready to accept connections, subject to current security settings.

Default security configuration accepts a connection from members of Everyone security group. That means
that any user is allowed to connect and monitor any supported device.

Note that this will also include anonymous users, but ONLY when the server computer is configured to
accept anonymous logon.

It is recommended for a server administrator to launch the administration utility immediately after
installation to change the default security configuration.

Activation
Device Monitoring Studio Server operates in trial mode until it is activated. To activate, you need to obtain a
license file. This section describes the ways you may use to apply the license file:

A simplest way is to double-click the license file (license file is a file with .dmssrvlic extension). After
the file is applied, Device Monitoring Studio Server must be restarted in order to load the new license.

Launch the following command line:

PowerShell
dmssrv.exe -license <full-path-to-license-file>

Device Monitoring Studio Server Documentation Introduction

4

After the file is applied, Device Monitoring Studio Server must be restarted in order to load the new
license.

Use the MMC Snap-In to install a license. Right-click the computer item, select “Properties”. On the
General page, click the Install License button and select the license file.

Use the IMonitoringAdmin.InstallLicense method to install a license file.

Last two methods do not require you to restart the server.

Device Monitoring Studio Server Documentation Introduction

5

Administration
Management MMC Snap-In
During installation, Device Monitoring Studio Server installs a configuration MMC Snap-In. A link to snap-in
is added to Start Menu and the snap-in is also available in the list of all snap-ins.

This snap-in is used for two purposes: administration and management.

Snap-in provides you with three types of objects:

Computers
Currently, there can be only one computer object (administration of remote servers is not supported
yet).

Connections
A connection represents a single client connection to the server.

Sessions
A session represents a single monitoring session from a client.

Administration

For the purposes of administration, Device Monitoring Studio Server Management MMC Snap-In provides
you with the Properties command on the Computer node. After invoked, it opens the following window:

Device Monitoring Studio Server Documentation Administration

6

General Page

General page contains two settings: here you may control whether the server accepts connections and
whether it is available for auto-discovery.

Security Page

Device Monitoring Studio Server supports Windows Security. This page allows you to configure users and
groups and grant them required rights. The following permissions are defined:

Device Monitoring Studio Server Documentation Administration

7

Permission Description
Connect to
server

A user is allowed to establish a connection to the server. This permission
must be granted for any other permission to be effective.

Auto-
discover

If a user is granted this permission to the server, he will see it in the
auto-discovery list in Connect to New Server window in Device
Monitoring Studio client. Connect to server permission must also be
granted.

Create
monitoring
session

A user must have this permission to start monitoring session. Connect to
server permission must also be granted to him. If the user has this
permission, it may monitor any supported device.

Restart
Device

This permission is required to restart any supported device connected to
the server. Connect to server permission is also required. Note: this
permission is currently ignored and no remote restart is implemented.

Note that if you change the security settings of the server, they will become effective only when all current
connections are closed. You may force this by manually dropping connections.

Management

Connection

For each connection, the following information is displayed:

User
Name of the user who established a connection.

Source
Name or address of the computer user's client is running on.

Status
Current connection status. Disconnected connections are automatically removed from the list.

Session ID
ID of the client's session on his computer.

Process ID
ID of the client's process on his computer.

Type
Shows if the client is 32-bit or 64-bit.

The following commands are provided to the administrator:

Drop Connection
Disconnect the connection and all its sessions.

Send Message…
Send a text message to the client over the connection.

Drop All Sessions
Drops all connection sessions but does not disconnect a connection.

Session

For each session, the following information is displayed:

Devices

Device Monitoring Studio Server Documentation Administration

8

A list of devices monitored by this session.
Status

Session status, including server and client pause.
Bytes Transferred

A number of bytes collected and transferred by this session.
Creation Time

Session creation time.
Data Source

The type of the device(s) this session monitors.
Duration

Active duration of the session.

Information is automatically refreshed every 5 seconds.

The following commands are provided to the administrator:

Drop
Drops this session.

Pause
Pauses the session. Note that a session may be paused on the server and on the client separately. A
client is not notified if the session is paused on the server. The status column shows whether the session
is paused on server, client, or both.

Resume
Resumes a session paused on the server.

Scripting
In addition to MMC Snap-In, the Device Monitoring Studio Server may be managed using the API it provides.
The first thing a user must do is to create a management object:

JavaScript
var dms = new ActiveXObject("dmssrv.MonitoringSite");

PowerShell
$dms = New-Object -ComObject 'dmssrv.MonitoringSite'

The caller must be a member of local or domain Administrators group and must be elevated in order to
connect to management object.

Events

Management object provides two events: _IMonitoringAdminEvents.OnConnectionAdded and
_IMonitoringAdminEvents.OnConnectionRemoved. Connection object provides two events as well:
_IConnectionEvents.OnSessionAdded and _IConnectionEvents.OnSessionRemoved.

Device Monitoring Studio Server Documentation Administration

9

Reference
IMonitoringAdmin Interface
Description

This is a main interface exposed by dmssrv.MonitoringSite object. Use the following PROGID to connect to
the instance: dmssrv.MonitoringSite . Use this interface to manage the server.

Declaration

TypeScript
interface IMonitoringAdmin extends IDispatch {
 // Properties
 AutoDiscover: boolean;
 readonly Connections: IConnectionCollection;
 ListenConnections: boolean;
 SecurityDescriptor: string;
 // Methods
 InstallLicense(path: string): void;
}

C#
public interface IMonitoringAdmin : IDispatch
{
 // Properties
 bool AutoDiscover { get; set; }
 IConnectionCollection Connections { get; }
 bool ListenConnections { get; set; }
 string SecurityDescriptor { get; set; }
 // Methods
 void InstallLicense(string path);
}

C++
struct IMonitoringAdmin : IDispatch
{
 // Properties
 VARIANT_BOOL AutoDiscover; // get set
 IConnectionCollectionPtr Connections; // get
 VARIANT_BOOL ListenConnections; // get set
 _bstr_t SecurityDescriptor; // get set
 // Methods
 HRESULT InstallLicense(_bstr_t path);
};

IMonitoringAdmin Properties

AutoDiscover

TypeScript
AutoDiscover: boolean;

C#
bool AutoDiscover { get; set; }

C++
VARIANT_BOOL AutoDiscover; // get set

Description

Device Monitoring Studio Server Documentation Reference

10

AutoDiscover property controls whether the server answers the auto-discover broadcast requests.

Connections

TypeScript
readonly Connections: IConnectionCollection;

C#
IConnectionCollection Connections { get; }

C++
IConnectionCollectionPtr Connections; // get

Description

This property returns the collection of connections.

Example

Obtaining list of connections:

PowerShell
$dms = New-Object -ComObject 'dmssrv.MonitoringSite'
$connections = dms.Connections

ListenConnections

TypeScript
ListenConnections: boolean;

C#
bool ListenConnections { get; set; }

C++
VARIANT_BOOL ListenConnections; // get set

Description

The property controls whether the server accepts connections or not.

SecurityDescriptor

TypeScript
SecurityDescriptor: string;

C#
string SecurityDescriptor { get; set; }

C++
_bstr_t SecurityDescriptor; // get set

Description

Get or set the server security descriptor. Security descriptor must be in string format. The following table
shows the values of supported permissions:

Device Monitoring Studio Server Documentation Reference

11

Permission Value
DMS_SERVER_CONNECT 0x00000001

DMS_SERVER_AUTODISCOVER 0x00000002

DMS_SERVER_CREATESESSION 0x00000004

DMS_SERVER_RESTARTDEVICE 0x00000008

Note that DMS_SERVER_CONNECT permission must be granted for any other permission to be effective.

Only the DACL part of passed security descriptor is used. Owner/group and audit information is ignored.

Example

Changing security descriptor.

PowerShell
$dms = New-Object -ComObject 'dmssrv.MonitoringSite'
$dms.SecurityDescriptor = 'D:(A;;0x3;;;WD)'

IMonitoringAdmin Methods

InstallLicense

TypeScript
InstallLicense(path: string): void;

C#
void InstallLicense(string path);

C++
HRESULT InstallLicense(_bstr_t path);

Parameters

path

A full path to license file.

Description

Installs a given license file.

IConnectionCollection Interface
Description

This interface is implemented by the connection collection object.

Declaration

TypeScript
interface IConnectionCollection extends IDispatch {
 // Properties
 Count: number;
 [Item: number]: IConnection;
}

Device Monitoring Studio Server Documentation Reference

12

C#
public interface IConnectionCollection : IDispatch
{
 // Properties
 int Count { get; set; }
 IConnection Item[int Index] { get; set; }
}

C++
struct IConnectionCollection : IDispatch
{
 // Properties
 long Count; // get set
 IConnectionPtr Item(_variant_t Index); // get set
};

IConnectionCollection Properties

Count

TypeScript
Count: number;

C#
int Count { get; set; }

C++
long Count; // get set

Description

Returns the number of connections in the collection.

Item

TypeScript
[Item: number]: IConnection;

C#
IConnection Item[int Index] { get; set; }

C++
IConnectionPtr Item(_variant_t Index); // get set

Description

Returns the connection from the collection. Index must be an integer number. In most languages, this
method may be called using the array indexing operator.

Example

Obtaining the last connection:

PowerShell
$dms = New-Object -ComObject 'dmssrv.MonitoringSite'
$connections = $dms.Connections
$connection = $connections[0]

IConnection Interface

Device Monitoring Studio Server Documentation Reference

13

Description

This interface is implemented by the connection object. Use it to control the individual client connection.

Declaration

TypeScript
interface IConnection extends IDispatch {
 // Properties
 readonly Client64: boolean;
 readonly Id: number;
 readonly ProcessId: number;
 readonly SessionId: number;
 readonly Sessions: ISessionCollection;
 readonly Source: string;
 readonly Status: ConnectionStatus;
 readonly UserName: string;
 // Methods
 Drop(): void;
 DropAllSessions(): void;
 SendCustomMessage(message: string): void;
}

C#
public interface IConnection : IDispatch
{
 // Properties
 bool Client64 { get; }
 ulong Id { get; }
 uint ProcessId { get; }
 uint SessionId { get; }
 ISessionCollection Sessions { get; }
 string Source { get; }
 ConnectionStatus Status { get; }
 string UserName { get; }
 // Methods
 void Drop();
 void DropAllSessions();
 void SendCustomMessage(string message);
}

C++
struct IConnection : IDispatch
{
 // Properties
 VARIANT_BOOL Client64; // get
 unsigned __int64 Id; // get
 unsigned long ProcessId; // get
 unsigned long SessionId; // get
 ISessionCollectionPtr Sessions; // get
 _bstr_t Source; // get
 ConnectionStatus Status; // get
 _bstr_t UserName; // get
 // Methods
 HRESULT Drop();
 HRESULT DropAllSessions();
 HRESULT SendCustomMessage(_bstr_t message);
};

IConnection Properties

Client64

Device Monitoring Studio Server Documentation Reference

14

TypeScript
readonly Client64: boolean;

C#
bool Client64 { get; }

C++
VARIANT_BOOL Client64; // get

Description

This property holds true if the client is running a 64-bit operating system and false otherwise.

Id

TypeScript
readonly Id: number;

C#
ulong Id { get; }

C++
unsigned __int64 Id; // get

Description

This property holds a unique identifier of a connection. This identifier is guaranteed to be unique for this
server only.

ProcessId

TypeScript
readonly ProcessId: number;

C#
uint ProcessId { get; }

C++
unsigned long ProcessId; // get

Description

This property holds a process id of the user who established a connection.

SessionId

TypeScript
readonly SessionId: number;

C#
uint SessionId { get; }

C++
unsigned long SessionId; // get

Description

Device Monitoring Studio Server Documentation Reference

15

This property holds a session id of the user who established a connection.

Sessions

TypeScript
readonly Sessions: ISessionCollection;

C#
ISessionCollection Sessions { get; }

C++
ISessionCollectionPtr Sessions; // get

Description

Returns a collection of all connected sessions.

Source

TypeScript
readonly Source: string;

C#
string Source { get; }

C++
_bstr_t Source; // get

Description

This property returns the computer name a connection originates from.

Status

TypeScript
readonly Status: ConnectionStatus;

C#
ConnectionStatus Status { get; }

C++
ConnectionStatus Status; // get

Description

Returns a connection status. One of the following values is returned:

Status Value Description
ClientDisconnected 0 Client has already been disconnected and connection is

closed. Connections are never re-used.
ClientConnected 1 Client is connected.

UserName

TypeScript
readonly UserName: string;

Device Monitoring Studio Server Documentation Reference

16

C#
string UserName { get; }

C++
_bstr_t UserName; // get

Description

This property holds a user name of the user that established a connection.

IConnection Methods

Drop

TypeScript
Drop(): void;

C#
void Drop();

C++
HRESULT Drop();

Description

Drops the current connection and all its monitoring sessions.

DropAllSessions

TypeScript
DropAllSessions(): void;

C#
void DropAllSessions();

C++
HRESULT DropAllSessions();

Description

Forcibly closes all active monitoring sessions for this connection.

SendCustomMessage

TypeScript
SendCustomMessage(message: string): void;

C#
void SendCustomMessage(string message);

C++
HRESULT SendCustomMessage(_bstr_t message);

Parameters

message

Device Monitoring Studio Server Documentation Reference

17

A text message to send.

Description

This method sends a supplied text message to the client. A client will see this message in a pop-up window.
An administrator may use this method to warn clients of the forthcoming server shutdown or session drop,
for example.

Example

Warning the user of the forthcoming shutdown.

PowerShell
$conn.SendCustomMessage('Prepare for disconnect. We are about to restart a server.')

ISessionCollection Interface
Description

This interface is implemented by the session collection object.

Declaration

TypeScript
interface ISessionCollection extends IDispatch {
 // Properties
 Count: number;
 [Item: number]: ISession;
}

C#
public interface ISessionCollection : IDispatch
{
 // Properties
 int Count { get; set; }
 ISession Item[int Index] { get; set; }
}

C++
struct ISessionCollection : IDispatch
{
 // Properties
 long Count; // get set
 ISessionPtr Item(_variant_t Index); // get set
};

ISessionCollection Properties

Count

TypeScript
Count: number;

C#
int Count { get; set; }

C++
long Count; // get set

Description

Device Monitoring Studio Server Documentation Reference

18

Returns the number of sessions in the collection.

Item

TypeScript
[Item: number]: ISession;

C#
ISession Item[int Index] { get; set; }

C++
ISessionPtr Item(_variant_t Index); // get set

Description

Returns the session from the collection. Index must be an integer number. In most languages, this method
may be called using the array indexing operator.

Example

Obtaining the first connected session:

PowerShell
$dms = New-Object -ComObject 'dmssrv.MonitoringSite'
$connections = $dms.Connections
$connection = $connections[0]
$session = $connection.Sessions[0]

ISession Interface
Description

This interface is used to manage a monitoring session.

Declaration

TypeScript
interface ISession extends IDispatch {
 // Properties
 readonly BytesTransferred: number;
 readonly Connection: IConnection;
 readonly CreationTime: Date;
 readonly DataSource: string;
 readonly Devices: IDeviceCollection;
 readonly Id: number;
 readonly Status: SessionStatus;
 // Methods
 Drop(): void;
 Pause(): void;
 Resume(): void;
}

Device Monitoring Studio Server Documentation Reference

19

C#
public interface ISession : IDispatch
{
 // Properties
 ulong BytesTransferred { get; }
 IConnection Connection { get; }
 DateTime CreationTime { get; }
 string DataSource { get; }
 IDeviceCollection Devices { get; }
 ulong Id { get; }
 SessionStatus Status { get; }
 // Methods
 void Drop();
 void Pause();
 void Resume();
}

C++
struct ISession : IDispatch
{
 // Properties
 unsigned __int64 BytesTransferred; // get
 IConnectionPtr Connection; // get
 Date CreationTime; // get
 _bstr_t DataSource; // get
 IDeviceCollectionPtr Devices; // get
 unsigned __int64 Id; // get
 SessionStatus Status; // get
 // Methods
 HRESULT Drop();
 HRESULT Pause();
 HRESULT Resume();
};

ISession Properties

BytesTransferred

TypeScript
readonly BytesTransferred: number;

C#
ulong BytesTransferred { get; }

C++
unsigned __int64 BytesTransferred; // get

Description

This property holds the total number of transferred bytes for the current session.

Connection

TypeScript
readonly Connection: IConnection;

C#
IConnection Connection { get; }

C++
IConnectionPtr Connection; // get

Device Monitoring Studio Server Documentation Reference

20

Description

This property returns a reference to a session's connection object.

CreationTime

TypeScript
readonly CreationTime: Date;

C#
DateTime CreationTime { get; }

C++
Date CreationTime; // get

Description

This property holds the session creation time.

DataSource

TypeScript
readonly DataSource: string;

C#
string DataSource { get; }

C++
_bstr_t DataSource; // get

Description

Returns the type of the source for the current session. Can be Serial , USB or Network .

Devices

TypeScript
readonly Devices: IDeviceCollection;

C#
IDeviceCollection Devices { get; }

C++
IDeviceCollectionPtr Devices; // get

Description

Returns a collection of session devices.

Id

TypeScript
readonly Id: number;

C#
ulong Id { get; }

Device Monitoring Studio Server Documentation Reference

21

C++
unsigned __int64 Id; // get

Description

This property holds a unique identifier of a session. This identifier is guaranteed to be unique for this server
only.

Status

TypeScript
readonly Status: SessionStatus;

C#
SessionStatus Status { get; }

C++
SessionStatus Status; // get

Description

This property holds the current session status. It equals one or more of the following values:

Status Value Description
SessionDisconnected 0x00000000 A session has been disconnected. Session

objects are never re-used.
SessionPausedByClient 0x00000001 A session has been paused by the client.
SessionPausedByServer 0x00000002 A session has been paused by the server.
SessionRunning 0x00000004 A session is running.

ISession Methods

Drop

TypeScript
Drop(): void;

C#
void Drop();

C++
HRESULT Drop();

Description

Disconnect the current session.

Pause

TypeScript
Pause(): void;

C#
void Pause();

Device Monitoring Studio Server Documentation Reference

22

C++
HRESULT Pause();

Description

Pauses the session. ISession.Status property will have SessionPausedByServer flag set after this method is
called. Use the ISession.Resume method to resume the paused session.

Resume

TypeScript
Resume(): void;

C#
void Resume();

C++
HRESULT Resume();

Description

Resumes a paused session. It removes the SessionPausedByServer status, but cannot remove the
SessionPausedByClient status.

IConnection

IDeviceCollection Interface
Description

This interface is implemented by the device collection object.

Declaration

TypeScript
interface IDeviceCollection extends IDispatch {
 // Properties
 Count: number;
 [Item: number]: IDevice;
}

C#
public interface IDeviceCollection : IDispatch
{
 // Properties
 int Count { get; set; }
 IDevice Item[int Index] { get; set; }
}

C++
struct IDeviceCollection : IDispatch
{
 // Properties
 long Count; // get set
 IDevicePtr Item(_variant_t Index); // get set
};

IDeviceCollection Properties

Count

Device Monitoring Studio Server Documentation Reference

23

TypeScript
Count: number;

C#
int Count { get; set; }

C++
long Count; // get set

Description

Returns the number of devices in the collection.

Item

TypeScript
[Item: number]: IDevice;

C#
IDevice Item[int Index] { get; set; }

C++
IDevicePtr Item(_variant_t Index); // get set

Description

Returns the device from the collection. Index must be an integer number. In most languages, this method
may be called using the array indexing operator.

IDevice Interface
Description

Use this interface to query for session's device names.

Declaration

TypeScript
interface IDevice extends IDispatch {
 // Properties
 readonly Key: string;
 readonly Name: string;
}

C#
public interface IDevice : IDispatch
{
 // Properties
 string Key { get; }
 string Name { get; }
}

C++
struct IDevice : IDispatch
{
 // Properties
 _bstr_t Key; // get
 _bstr_t Name; // get
};

Device Monitoring Studio Server Documentation Reference

24

IDevice Properties

Key

TypeScript
readonly Key: string;

C#
string Key { get; }

C++
_bstr_t Key; // get

Description

This property holds a device key. A device key is a system identifier that uniquely describes the instance of
the connected device. The format is internal and may be different for different device types. Note that the
same device connected to another port usually generates another device key, therefore, is considered as
another device by Device Monitoring Studio Server.

Name

TypeScript
readonly Name: string;

C#
string Name { get; }

C++
_bstr_t Name; // get

Description

This property holds a device name.

_IMonitoringAdminEvents Interface
Description

This interface encapsulates two events generated by monitoring site object. You implement this interface
either directly or indirectly by binding to monitoring site object events.

Declaration

TypeScript
// This interface is not available in scripting environment

C#
public interface _IMonitoringAdminEvents : IDispatch
{
 // Methods
 void OnConnectionAdded(IConnection connection);
 void OnConnectionRemoved(IConnection connection);
}

Device Monitoring Studio Server Documentation Reference

25

C++
struct _IMonitoringAdminEvents : IDispatch
{
 // Methods
 HRESULT OnConnectionAdded(IConnection connection);
 HRESULT OnConnectionRemoved(IConnection connection);
};

_IMonitoringAdminEvents Methods

OnConnectionAdded

TypeScript
// This method is not available in scripting environment

C#
void OnConnectionAdded(IConnection connection);

C++
HRESULT OnConnectionAdded(IConnection connection);

Parameters

connection

Reference to new connection object.

Description

This event is generated when new connection is established.

OnConnectionRemoved

TypeScript
// This method is not available in scripting environment

C#
void OnConnectionRemoved(IConnection connection);

C++
HRESULT OnConnectionRemoved(IConnection connection);

Parameters

connection

Reference to disconnected connection object.

Description

This event is generated when the connection is disconnected.

IConnection

_IConnectionEvents Interface
Description

This interface encapsulates two session-related events exposed by connection object. You implement this
interface either directly or indirectly by binding to connection object events.

Device Monitoring Studio Server Documentation Reference

26

Declaration

TypeScript
// This interface is not available in scripting environment

C#
public interface _IConnectionEvents : IDispatch
{
 // Methods
 void OnSessionAdded(ISession session);
 void OnSessionRemoved(ISession session);
}

C++
struct _IConnectionEvents : IDispatch
{
 // Methods
 HRESULT OnSessionAdded(ISession session);
 HRESULT OnSessionRemoved(ISession session);
};

_IConnectionEvents Methods

OnSessionAdded

TypeScript
// This method is not available in scripting environment

C#
void OnSessionAdded(ISession session);

C++
HRESULT OnSessionAdded(ISession session);

Parameters

session

Reference to new session object.

Description

This event is fired each time new session is created.

OnSessionRemoved

TypeScript
// This method is not available in scripting environment

C#
void OnSessionRemoved(ISession session);

C++
HRESULT OnSessionRemoved(ISession session);

Parameters

session

Reference to a disconnected session object.

Device Monitoring Studio Server Documentation Reference

27

Description

This event is fired when a session is disconnected.

ISession

Device Monitoring Studio Server Documentation Reference

28

	Table of Contents
	Introduction
	Installation
	Activation

	Administration
	Management MMC Snap-In
	Administration
	General Page
	Security Page

	Management
	Connection
	Session

	Scripting
	Events

	Reference
	IMonitoringAdmin Interface
	Declaration
	IMonitoringAdmin Properties
	AutoDiscover
	Connections
	ListenConnections
	SecurityDescriptor

	IMonitoringAdmin Methods
	InstallLicense

	IConnectionCollection Interface
	Declaration
	IConnectionCollection Properties
	Count
	Item

	IConnection Interface
	Declaration
	IConnection Properties
	Client64
	Id
	ProcessId
	SessionId
	Sessions
	Source
	Status
	UserName

	IConnection Methods
	Drop
	DropAllSessions
	SendCustomMessage

	ISessionCollection Interface
	Declaration
	ISessionCollection Properties
	Count
	Item

	ISession Interface
	Declaration
	ISession Properties
	BytesTransferred
	Connection
	CreationTime
	DataSource
	Devices
	Id
	Status

	ISession Methods
	Drop
	Pause
	Resume

	IDeviceCollection Interface
	Declaration
	IDeviceCollection Properties
	Count
	Item

	IDevice Interface
	Declaration
	IDevice Properties
	Key
	Name

	_IMonitoringAdminEvents Interface
	Declaration
	_IMonitoringAdminEvents Methods
	OnConnectionAdded
	OnConnectionRemoved

	_IConnectionEvents Interface
	Declaration
	_IConnectionEvents Methods
	OnSessionAdded
	OnSessionRemoved

