
1
5
5
5
5
6
6
7
7
7
8
8
8
9
9
9
9
9
9
9

10
10
10
10
10
10
10
10
10
11
11
12
12
12
14
14
14
14
15
15
15
15
15
16
16
16
17
17
18
18
18

Table of Contents
Table of Contents
Getting Started

Library Features
Licensing
Installation
Library Redistribution Policy

General Library Distribution Information
Distribution of the original SPMC installation package.
Library Redistribution

Manual Redistribution
Windows Installer Merge Module

Activating the Redistributed Library
Activating Serial Port Monitoring Control

Using SPMC
Usage Environments

Native Environment
Managed Environment

General Guidelines
Native Conventions

Dual Interfaces
INativeListener Local Interface
Time Values
INativeListener Methods Parameters

Managed Conventions
Dual Interfaces
Event Interfaces

How To
How To Initialize the SPMC Library

Native Environment
Managed Environment

How To Enumerate Serial Devices
How To Retrieve the Serial Device Properties
How To Create a Monitor Object
How To Receive Monitored Events

Reference
ISerialMonitor Interface

Declaration
Examples
ISerialMonitor Properties

Devices
ISerialMonitor Methods

CreateMonitor
InstallLicense
DisplayActivationDialog
InstallLicenseInMemory
InstallLicenseInMemoryNative

IMonitoring Interface
Declaration
IMonitoring Properties

ConnectedDevice
Connected

Serial Port Monitoring Control Documentation Table of Contents

1

18
18
18
19
19
20
20
20
21
21
21
21
22
22
22
23
23
23
24
24
24
24
24
25
25
26
26
27
27
28
28
28
29
29
30
30
31
32
32
33
34
34
35
36
36
36
37
37
38
38
38
39
39
39

SerialMonitor
IMonitoring Methods

Connect
Disconnect
AddNativeListener
RemoveNativeListener

IDevice Interface
Declaration
IDevice Properties

Name
ConnectionString
Present
Type
Port
Icon
OpenedBy

IDeviceCollection Interface
Declaration
IDeviceCollection Properties

this
Count

IDeviceCollection Methods
GetEnumerator

INativeListener Interface
Declaration
INativeListener Methods

GetCaps
ProcessRAWBuffer
OnConnection
OnOpen
OnClosed
OnRead
OnWrite
OnTransmit
OnBaudRate
OnSerialChars
OnCommStatus
OnDTRRTS
OnHandflow
OnLineControl
OnStats
OnTimeouts
OnWaitMask
OnPurge
OnSetQueueSize
OnSetBreak
OnDTR
OnReset
OnRTS
OnXOFF
OnXON
OnWaitOnMask
OnGetModemStatus
OnGetProperties

Serial Port Monitoring Control Documentation Table of Contents

2

41
41
41
42
42
42
42
44
44
44
44
45
45
46
46
47
47
48
49
49
50
51
51
52
52
53
53
53
54
54
54
55
55
56
57
57
57
58
58
59
59
60
60
60
61
61
61
62

OnClearStats
_ISerialMonitorEvents Interface

Declaration
_ISerialMonitorEvents Methods

OnChange
_IMonitoringEvents Interface

Declaration
_IMonitoringEvents Methods

OnConnection
OnOpen
OnClose
OnRead
OnWrite
OnTransmit
OnBaudRate
OnSerialChars
OnCommStatus
OnDTRRTS
OnHandflow
OnLineControl
OnStats
OnTimeouts
OnWaitMask
OnPurge
OnSetQueueSize
OnSetBreak
OnDTR
OnReset
OnRTS
OnXOFF
OnXON
OnWaitOnMask
OnGetModemStatus
OnGetProperties
OnClearStats

DeviceType Enumeration
BAUDRATES Enumeration
DATABITS_ST Enumeration
EVENTS Enumeration
MODEMSTATUS Enumeration
PARITY Enumeration
PROVIDERCAPS Enumeration
PROVIDERSETTABLE Enumeration
PROVIDERTYPE Enumeration
PURGE Enumeration
STOPBITS Enumeration
STOPPARITY_ST Enumeration
ConnectionState Enumeration

Serial Port Monitoring Control Documentation Table of Contents

3

Serial Port Monitoring Control Documentation Table of Contents

4

Getting Started
The Serial Port Monitoring Control library provides the serial port monitoring functionality for your code.
The library lets you enumerate all installed serial devices, including, but not limited to serial ports and
modems. All kind of PnP serial devices as well as virtual devices are also supported. After you get an instance
of the serial device, you can create a monitor object and attach it to the device to receive monitored data and
events. The Monitor object can be attached to the device at any time, no matter if the device is being
currently used or not. You can also detach from the device at any time. Below you will find the short list of
terms used throughout this documentation.

SPMC, The Library, library, control
The Serial Port Monitoring Control library

User or client code
Code in any language that instantiates the SPMC and calls its methods

The monitored application
The application that has the monitored serial device open.

Library Features

The HHD Software Serial Port Monitoring Control library offers the following functionality:

Support for PnP and virtual serial devices with hot-plug and hot-unplug functionality.
Ability to work with any software that opens a serial port and initiates communication through it.
Interception of all data read from and written to the serial device.
Interception and detailed decoding of all serial input/output control codes (IOCTLs).
Full compatibility with ACPI features.
Support for Windows 7, Windows 8, Windows 8.1 and Windows 10 (32-bit and 64-bit) as well as
corresponding server versions.
Provides two high-performance mechanisms for native code and one high-compatibility interface for
managed code.
High compatibility with all modern development environments, including Microsoft Visual Studio and
Embarcadero RAD Studio.
Library client code can be written in any language, including C++, Delphi, C#, VB.NET and any other
CLR-compatible language.

Licensing
This section contains the list of licenses the Serial Port Monitoring Control is distributed under. Please note
that the licensing is subject to change. For a most recent information please visit the HHD Software Web site.

You may find the detailed information on Serial Port Monitoring Control licensing on-line. Click on a link
below to read the corresponding license agreement.

License type Single
developer

Unlimited number of
developers

Distribution rights
included

Single Developer &
Distribution

X X

Site Developer &
Distribution

X X

Installation
The library is distributed as a single executable file which is signed by the HHD Software, Ltd. You can use
the operating system's provided tools to verify the digital signature to make sure the file is delivered

Serial Port Monitoring Control Documentation Getting Started

5

../reference/imonitoring.html
http://www.hhdsoftware.com/dispatch/spmc/software-licenses/SINGLE_DEVELOPER_DISTRIBUTION
http://www.hhdsoftware.com/dispatch/spmc/software-licenses/SITE_DEVELOPER_DISTRIBUTION

unmodified by any third-party and is free of transmission errors.

The library installer, when launched, asks you to provide the library installation path, or to accept the default.
You can also choose whether you need the library samples to be installed or not.

After installation, the following structure appears in destination folder:

bin/x64

hhdspmc.dll (64-bit version of ActiveX control DLL)
DIFxAPI64.dll (64-bit driver installation framework redistributable component)

bin/x86

hhdspmc.dll (32-bit version of ActiveX control DLL)
DIFxAPI32.dll (32-bit driver installation framework redistributable component)

doc

hhdspmc.chm (this documentation)
drivers

hhdspmc.inf (Driver installation information file)
hhdspmc_x86.cat (32-bit driver catalog file)
hhdspmc_x64.cat (64-bit driver catalog file)
hhdspmc32.sys (32-bit serial filter driver)
hhdspmc64.sys (64-bit serial filter driver)

inc

hhdspmc.h (Compiled IDL file)
hhdspmc.idl (IDL file with library classes and interfaces)

lib/x64

hhdspmc.lib (64-bit import library)
lib/x86

hhdspmc.lib (32-bit import library)
redist/Manual

spmc_redist.exe (SPMC redistributable package)
redist/Merge Module/x64

spmc_msm_x64.msm (64-bit Windows Installer Merge Module)
redist/Merge Module/x86

spmc_msm_x86.msm (32-bit Windows Installer Merge Module)
Samples

Contains all SPMC sample projects and solutions

Several files (dynamic-link libraries, drivers and import libraries) are available as 32-bit and 64-bit. When
SPMC is installed on 64-bit machine, both 64-bit and 32-bit libraries are registered, allowing all kind of user
code to access the library.

On 32-bit machine, on the other hand, only 32-bit library is registered, and you can only run 32-bit client
code.

Library Redistribution Policy
Library redistribution policy largely depends on the purchased license. Detailed information about library
redistribution can be found in the Licensing topic. General information is also provided below.

General Library Distribution Information

Serial Port Monitoring Control Documentation Getting Started

6

The SPMC library can be distributed in two ways:

Distribution of the original SPMC installation package.

You are allowed to distribute the original library installation package provided the following is true: the
hhdspmc.exe file is not modified by any means and is accompanied by a link to HHD Software web site. This
can be an Internet URL file, a readme file in the same folder or same archive where the hhdspmc.exe file is
located on distribution media. If the file is distributed on the Web Site, the link to HHD Software web site
must be on the same page as the link to the hhdspmc.exe file.

The hhdspmc.exe file, as well as all other files available on HHD Software Web Site, is digitally signed. Please
verify that the digital signature is still valid before distributing the file. If, on the other side, you somehow
received the Serial Port Monitoring Control library and found that signature validation algorithm fails, please
be so kind to notify us via our contact page.

Library Redistribution

Two ways of redistributing the library are provided by the current version: manual redistribution and
Windows Installer merge module.

Manual Redistribution

To redistribute the library with your application, use the spmc_redist.exe file, located in the
redist\Manual folder.

This is a Win32 executable without any external references. It supports all operating systems starting from
Windows 7 (both 32-bit and 64-bit).

Launch this executable on a target computer to install or uninstall the SPMC library and accompanying filter
driver. It automatically installs 32-bit or 64-bit version of components. Below is executable's command line
parameters:

Command Prompt
spmc_redist.exe [/q] [/u] [/t <path>] [/?]

Parameter Description
/q Quiet mode. Do not display any user interface. Note that on some

operating systems, driver installation prompt may still be displayed.
/u Uninstall the library. If not specified, performs library installation.
/t <path> Use the given installation path instead of the default one.
/? Display supported command line parameters.

spmc_redist.exe must be launched by a user with administrative privileges. On Windows 7 and later
operating systems, the user must be elevated. Library installation may be performed by more restricted user
if she has write access to destination folder, has write access to system drivers folder (usually
\Windows\System32\Drivers) and has been assigned an Install Device Drivers privilege.

If /q switch is not specified, a message box with a short description of the result of operation is displayed.

Upon exit, spmc_redist.exe returns an error code, which must be interpreted as described below:

Error code Meaning
0 (S_OK) Library installation/uninstallation has been successful.
1 (S_FALSE) Library installation/uninstallation has been successful. Reboot is

required to complete the installation.
any other Any other code must be treated as a standard HRESULT value.

Serial Port Monitoring Control Documentation Getting Started

7

Windows Installer Merge Module

If your application is packaged with Windows Installer, you may use the merge modules provided in the
redist\Merge Module folder. Use the correct module for your target platform (32-bit or 64-bit).

Activating the Redistributed Library

Library activation is performed in your installation code by calling one of the ISerialMonitor.InstallLicense,
ISerialMonitor.InstallLicenseInMemory or ISerialMonitor.InstallLicenseInMemoryNative methods.

You are explicitly prohibited from charging any fee for all kinds of library distribution!

Activating Serial Port Monitoring Control
This section provides a complete description of the steps you need to follow in order to activate your copy of
the HHD Software Serial Port Monitoring Control.

First, you need to have an account in our internal database, which means that the product must already be
purchased. If you haven't purchased it yet, please follow to the product's homepage.

Below is the Activation dialog.

You need to provide a full path to the license file in order to activate the SPMC.

You can enter the path manually, or click the Browse button.

Serial Port Monitoring Control Documentation Getting Started

8

../reference/iserialmonitor.html#InstallLicense
../reference/iserialmonitor.html#InstallLicenseInMemory
../reference/iserialmonitor.html#InstallLicenseInMemoryNative

Using SPMC
Usage Environments
This documentation defines the usage environment as a programming language or development platform,
for which it is possible to use the Serial Port Monitoring Control library. Theoretically, there are unlimited
languages and platforms that can use the library, because it supports both pure COM and OLE automation
interfaces, which makes it highly portable. For clarity, in this documentation we focus on the following two
environments:

Native Environment

Native environment means the language that is binary compatible with COM , more precisely, the one that
supports COM local interfaces. You can create a native client in C/C++ languages, Borland Delphi and
others. As usual, if you are looking for the highest performance and lowest overhead, while keeping your
executable as small as possible, the native environment is the right choice for you.

The native client must load the library as an in-proc component and make sure to use the free threaded
marshaller. In fact, the so-called native interfaces in the library require that your runtime does not provide
the marshaller for the interface - they are intended to be called directly. INativeListener is the only pure
native interface in the library. All other interfaces are dual and can be called through any marshaller (or
without one).

Managed Environment

Under managed environment we understand all scripting and similar languages. They include JavaScript ,
VB Script , Visual Basic , Java and the whole .NET platform. All these languages and tools are capable of
working with OLE automation-compatible interfaces. The SPMC library supports managed clients, providing
the highest possible performance while keeping the library usage as simple as possible.

Please note, that you can also create the client in “native” languages, such as C++ or Delphi , that in fact uses
the managed version of the library interfaces. While this is possible and actually may simplify your code and
boost your development time, the performance will be slightly less, compared to the one in pure native
environment.

General Guidelines
The library has the following structure:

Native Conventions

Dual Interfaces

ISerialMonitor, IDeviceCollection, IDevice and IMonitoring interfaces are declared dual. To use their binary-
compatible (local) part in native code, include the hhdspmc.h file in your project. Remember, that the library
must be loaded into your process address space to use the local interfaces without a marshaller.

Serial Port Monitoring Control Documentation Using SPMC

9

../reference/inativelistener.html
../reference/iserialmonitor.html
../reference/idevicecollection.html
../reference/idevice.html
../reference/imonitoring.html

INativeListener Local Interface

The INativeListener interface is a local interface, so it can only be used in the native code. Unlike other
interfaces declared in the SPMC, the library does not have any object that implements this interface. Instead,
you must implement this interface in your native listener object. Each Monitor object supports adding one
or more native listeners via the IMonitoring.AddNativeListener method call.

The monitor object is capable of providing two different protocols for each native listener. Your
implementation must support exactly one of these protocols. If you support the first (raw) protocol, you will
be able to achieve the highest possible speed, but will have to parse the monitored data in your own code. If
you choose to support the second (standard) protocol, the library will parse each monitored request for you
and call the appropriate method in the INativeListener interface for each request type.

Time Values

Every standard protocol method in the INativeListener interface accepts the FILETIME * value as a first
parameter. This parameter points to the library-allocated FILETIME structure containing the time of the
monitored event. Time is stored in UTC. Do not modify the contents of the variable, treat it as read only.

INativeListener Methods Parameters

Each standard protocol method in the INativeListener interface provides one or more parameters which
contain or point to the parsed request data. The first parameter is always a pointer to a FILETIME structure,
containing the UTC time of the event, while others (if present) contain the parsed request data. Consult the
documentation for individual methods to get more information.

The general rule states that all data passed to the INativeListener methods should be considered read
only.

Managed Conventions

Dual Interfaces

All managed environments are capable of using dual interfaces. Unlike the native environments, which use
the local, binary-compatible part of the dual interface, the managed environment uses the IDispatch
interface to call methods and query/set properties. ISerialMonitor, IDeviceCollection, IDevice and IMonitoring
interfaces are all dual interfaces and can be easily used in managed environments.

Event Interfaces

The Serial Port Monitoring Control library has two event interfaces: _ISerialMonitorEvents and
_IMonitoringEvents. Different managed environments support different styles of connecting event handlers
to event sources. Please consult your language documentation to find out how to handle OLE automation
events. Native clients are also able to attach event handlers to event sources. Please consult the MSDN for
more information, or look at the included sample code for an example.

How To
How To Initialize the SPMC Library

This section describes the steps you need to carry in order to successfully initialize the SPMC library.

Native Environment

1. Use the #import directive to bring definitions into the scope:

C++
#import "full_path_to_hhdspmc.dll"

Serial Port Monitoring Control Documentation Using SPMC

10

../reference/inativelistener.html
../reference/imonitoring.html#AddNativeListener
../reference/iserialmonitor.html
../reference/idevicecollection.html
../reference/idevice.html
../reference/imonitoring.html
../reference/_iserialmonitorevents.html
../reference/_imonitoringevents.html

or

C++
#import "progid:hhdspmc.SerialMonitor.1.2"

or

C++
#import "libid:DD962786-3734-4BE3-B375-5E6F3FD37E37" version("1.2")

2. Declare the pointer to the ISerialMonitor interface.

C++
ISerialMonitorPtr pSerialMonitor;

3. Create the instance of the SerialMonitor object .

C++
pSerialMonitor.CoCreateInstance(__uuidof(SerialMonitor));

Remember that you cannot create more than one SerialMonitor object in single process. Although,
you can have as many Monitor objects as you need.

Managed Environment

Use your language-provided tools to add the reference to the Serial Port Monitoring Control library into
your project.

How To Enumerate Serial Devices

This section describes the steps you need to carry in order to enumerate the serial devices installed on the
computer.

1. Initialize the SerialMonitor object, as described in the this tutorial.

2. Obtain the pointer to the IDeviceCollection interface of the serial device collection object by taking the
value of the Devices property:

C++
IDeviceCollectionPtr pDeviceCollection = pSerialMonitor->Devices;

C#
DeviceCollection devices = sm.Devices;

3. Get the value of the Count property:

C++
long Count = pDeviceCollection->Count;

C#
uint Count = devices.Count;

4. Cycle through all items of the collection:

Serial Port Monitoring Control Documentation Using SPMC

11

../../reference/idevicecollection.html

C++
for (long i = 0; i < Count; ++i)
{
 IDevicePtr pDevice = pDeviceCollection->Item[CComVariant {i}];
 // ...
}

C#
foreach (var device in devices)
{
 // ...
}

How To Retrieve the Serial Device Properties

This section describes the steps you need to carry in order to retrieve the properties of the serial device.

1. Obtain the IDevice pointer for the device in question.

2. Take the values of the Name, ConnectionString, Icon, Port, Present and Type properties.

C++
_bstr_t Name, ConnectionString, Port;
VARIANT_BOOL Present;
DeviceType Type;
HICON hIcon;

Name = pDevice->Name;
ConnectionString = pDevice->ConnectionString;
Port = pDevice->Port;
Present = pDevice->Present;
Type = pDevice->Type;
hIcon = pDevice->Icon;

C#
string Name = device.Name;
string ConnectionString = device.ConnectionString;
string Port = device.Port;
bool Present = device.Present;
DeviceType type = device.Type;

How To Create a Monitor Object

This section describes the steps you need to carry in order to create a monitor object.

1. Initialize the SerialMonitor object, as described in the this tutorial.

2. Call the CreateMonitor method to create a monitor object and receive the IMonitoring interface.

C++
IMonitoringPtr pMonitor = pSerialMonitor->CreateMonitor();

C#
Monitor monitor = sm.CreateMonitor();

You can create as many monitor objects as you need. Each Monitor object can be attached to one serial
device at a time and can have as many native listeners or event handlers attached, as you need.

How To Receive Monitored Events

This section describes the steps you need to carry in order to receive monitored events in your code.

Serial Port Monitoring Control Documentation Using SPMC

12

../../reference/idevice.html
../../reference/imonitoring.html

1. Obtain the Monitor object, as described in this tutorial.

2. Add your listener object (for native code) to the Monitor object or connect event handlers (for
managed code):

C++
class CMyListener : CComObjectRoot<CMyListener>, public INativeListener
{
public:
 // override all pure virtual methods in the INativeListener
};

...

CComObject<CMyListener> pMyListenerObject;
CComObject<CMyListener>::CreateInstance(&pMyListenerObject);
CComPtr<INativeListener> pMyListener;
pMyListenerObject->QueryInterface(&pMyListener);
pMonitor->AddNativeListener(pMyListener);

C#
monitor.OnOpen += new hhdspmcLib._IMonitoringEvents_OnOpenEventHandler(monitor_OnOpen);
monitor.OnPurge += new hhdspmcLib._IMonitoringEvents_OnPurgeEventHandler(monitor_OnPurge);
monitor.OnRead += new hhdspmcLib._IMonitoringEvents_OnReadEventHandler(monitor_OnRead);
...

3. Attach the Monitor object to the serial device:

Attach to the given serial device:

C++
pMonitor->Connect(CComVariant(pDevice));

C#
monitor.Connect(device);

Attach to the serial device connected to the COM port:

C++
pMonitor->Connect(CComVariant(L"COM1"));

C#
monitor.Connect("COM1");

Attach to the next serial device the user plugs into the computer:

C++
pMonitor->Connect(CComVariant {VT_EMPTY});

C#
monitor.Connect();

Serial Port Monitoring Control Documentation Using SPMC

13

Reference
ISerialMonitor Interface
Description

This is the first interface you get from the hhdspmc library. It is used to get the list of installed serial devices
and create Monitor objects.

Declaration

TypeScript
interface ISerialMonitor {
 // Properties
 // Methods
 CreateMonitor(): IMonitoring;
 InstallLicense(LicenseFile: string): void;
}

C#
public interface ISerialMonitor
{
 // Properties
 IDeviceCollection Devices { get; set; }
 // Methods
 IMonitoring CreateMonitor();
 void InstallLicense(string LicenseFile);
 void DisplayActivationDialog(ulong WindowHandle);
 void InstallLicenseInMemory(Array Data);
}

C++
struct ISerialMonitor : IDispatch
{
 // Properties
 IDeviceCollectionPtr Devices; // get set
 // Methods
 IMonitoringPtr CreateMonitor();
 HRESULT InstallLicense(_bstr_t LicenseFile);
 HRESULT DisplayActivationDialog(HWND WindowHandle);
 HRESULT InstallLicenseInMemory(SAFEARRAY(byte) Data);
 HRESULT InstallLicenseInMemoryNative(const UCHAR * pData, ULONG Size);
};

Examples

This example shows you how to create a SerialMonitor object:

TypeScript
let serialMonitor = new ActiveXObject()

C#
var pSerialMonitor = new hhdspmcLib.SerialMonitor();

Serial Port Monitoring Control Documentation Reference

14

C++
#import "hhdspmc.dll"

// ...

hhdspmcLib::ISerialMonitorPtr pSerialMonitor;
if (SUCCEEDED(pSerialMonitor.CreateInstance(__uuidof(SerialMonitor))))
{
 // ... work with object
}

ISerialMonitor Properties

Devices

TypeScript
// This property is not available in scripting environment

C#
IDeviceCollection Devices { get; set; }

C++
IDeviceCollectionPtr Devices; // get set

Description

Use this property to get the serial devices collection. Each installed serial device is present in this collection. If
the serial device is currently not plugged to the computer, it still exists in this collection, but its Present
property equals to false .

ISerialMonitor Methods

CreateMonitor

TypeScript
CreateMonitor(): IMonitoring;

C#
IMonitoring CreateMonitor();

C++
IMonitoringPtr CreateMonitor();

Description

Creates a new monitor object that is ready to be attached to serial device for monitoring.

InstallLicense

TypeScript
InstallLicense(LicenseFile: string): void;

C#
void InstallLicense(string LicenseFile);

C++
HRESULT InstallLicense(_bstr_t LicenseFile);

Serial Port Monitoring Control Documentation Reference

15

Parameters

LicenseFile

Full path to the license file.

Description

Install a given license file.

DisplayActivationDialog

TypeScript
// This method is not available in scripting environment

C#
void DisplayActivationDialog(ulong WindowHandle);

C++
HRESULT DisplayActivationDialog(HWND WindowHandle);

Parameters

WindowHandle

Parent window handle.

Description

Displays the activation dialog and lets the user to manually activate the SPMC.

InstallLicenseInMemory

TypeScript
// This method is not available in scripting environment

C#
void InstallLicenseInMemory(Array Data);

C++
HRESULT InstallLicenseInMemory(SAFEARRAY(byte) Data);

Parameters

Data

License data in memory as byte array.

Description

Install a license file, which contents is loaded into memory and provided in a byte array. Primary for
managed clients.

InstallLicenseInMemoryNative

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

Serial Port Monitoring Control Documentation Reference

16

C++
HRESULT InstallLicenseInMemoryNative(const UCHAR * pData, ULONG Size);

Parameters

pData

Pointer to the license data in memory.
Size

License data size, in bytes.

Description

Install a given license file stored in a memory buffer. Provided primary for native clients who already loaded
the license file into memory.

IMonitoring Interface
Description

This interface is implemented by the Monitor object in the Serial Monitoring Control library. You get this
interface by calling the ISerialMonitor.CreateMonitor method and use it to start monitoring the serial device.

Declaration

TypeScript
interface IMonitoring {
 // Properties
 readonly ConnectedDevice: IDevice;
 readonly Connected: boolean;
 readonly SerialMonitor: ISerialMonitor;
 // Methods
 Connect(device?: IDevice | string, highPrecision = false): void;
 Disconnect(): void;
}

C#
public interface IMonitoring
{
 // Properties
 IDevice ConnectedDevice { get; }
 bool Connected { get; }
 ISerialMonitor SerialMonitor { get; }
 // Methods
 void Connect(object device, bool highPrecision = false);
 void Disconnect();
 void AddNativeListener(INativeListener listener);
 void RemoveNativeListener(INativeListener listener);
}

C++
struct IMonitoring : IDispatch
{
 // Properties
 IDevicePtr ConnectedDevice; // get
 VARIANT_BOOL Connected; // get
 ISerialMonitorPtr SerialMonitor; // get
 // Methods
 HRESULT Connect(const _variant_t & device, VARIANT_BOOL highPrecision = VARIANT_FALSE);
 HRESULT Disconnect();
 HRESULT AddNativeListener(INativeListener * listener);
 HRESULT RemoveNativeListener(INativeListener * listener);
};

Serial Port Monitoring Control Documentation Reference

17

IMonitoring Properties

ConnectedDevice

TypeScript
readonly ConnectedDevice: IDevice;

C#
IDevice ConnectedDevice { get; }

C++
IDevicePtr ConnectedDevice; // get

Description

Returns the device this monitor currently is connected to, or null if it is not connected.

Connected

TypeScript
readonly Connected: boolean;

C#
bool Connected { get; }

C++
VARIANT_BOOL Connected; // get

Description

Returns true if this monitor object is currently connected to the serial device.

SerialMonitor

TypeScript
readonly SerialMonitor: ISerialMonitor;

C#
ISerialMonitor SerialMonitor { get; }

C++
ISerialMonitorPtr SerialMonitor; // get

Description

Returns the reference to the main Serial Monitor object.

IMonitoring Methods

Connect

TypeScript
Connect(device?: IDevice | string, highPrecision = false): void;

C#
void Connect(object device, bool highPrecision = false);

Serial Port Monitoring Control Documentation Reference

18

C++
HRESULT Connect(const _variant_t & device, VARIANT_BOOL highPrecision = VARIANT_FALSE);

Parameters

device

This parameter may be one of the following:

String Port name. This string name will be used as an index to
the ISerialMonitor.Devices collection and the resulting
IDevice object will be used

IDevice pointer Pointer to the serial device you want to connect to
Omitted Tell the monitor to wait for the next serial device to be

plugged to the computer and connect to it immediately.
highPrecision

Set this parameter to true to use high-precision time and false otherwise.

Description

Tell the Monitor object to connect to the serial device. device can be the port name or the IDevice pointer. If
omitted (VT_EMPTY variant in native code), the monitor will connect to the next connected serial device.

If you have already attached a Native Listener or an event sink to the monitor object, you will immediately
receive the OnConnection event. If you omitted the device parameter, you would not receive the event until
the new serial device is plugged.

Disconnect

TypeScript
Disconnect(): void;

C#
void Disconnect();

C++
HRESULT Disconnect();

Description

Disconnect the monitor object from the serial device.

AddNativeListener

TypeScript
// This method is not available in scripting environment

C#
void AddNativeListener(INativeListener listener);

C++
HRESULT AddNativeListener(INativeListener * listener);

Parameters

listener

Serial Port Monitoring Control Documentation Reference

19

iserialmonitor.html#Devices
idevice.html
idevice.html

Pointer to the caller-implemented object with INativeListener interface.

Description

Adds new native listener to the Monitor object. This method should only be called by native clients.

RemoveNativeListener

TypeScript
// This method is not available in scripting environment

C#
void RemoveNativeListener(INativeListener listener);

C++
HRESULT RemoveNativeListener(INativeListener * listener);

Parameters

listener

Pointer to the caller-implemented object with INativeListener interface.

Description

Removes the native listener from the list of registered native listeners. This method should only be called by
native clients.

IDevice Interface
Description

This interface is implemented by the Serial Monitoring library for each registered serial device. Use this
interface to query the serial device properties.

Declaration

TypeScript
interface IDevice {
 // Properties
 readonly Name: string;
 readonly ConnectionString: string;
 readonly Present: boolean;
 readonly Type: DeviceType;
 readonly Port: string;
 readonly Icon: number;
 readonly OpenedBy: boolean;
}

C#
public interface IDevice
{
 // Properties
 string Name { get; }
 string ConnectionString { get; }
 bool Present { get; }
 DeviceType Type { get; }
 string Port { get; }
 ulong Icon { get; }
 bool OpenedBy { get; }
}

Serial Port Monitoring Control Documentation Reference

20

inativelistener.html
inativelistener.html

C++
struct IDevice : IDispatch
{
 // Properties
 _bstr_t Name; // get
 _bstr_t ConnectionString; // get
 VARIANT_BOOL Present; // get
 DeviceType Type; // get
 _bstr_t Port; // get
 HICON Icon; // get
 VARIANT_BOOL OpenedBy; // get
};

IDevice Properties

Name

TypeScript
readonly Name: string;

C#
string Name { get; }

C++
_bstr_t Name; // get

Description

This property returns the string containing the device name. This name can be used only for identification
purposes and shows the driver-assigned name for the serial device.

ConnectionString

TypeScript
readonly ConnectionString: string;

C#
string ConnectionString { get; }

C++
_bstr_t ConnectionString; // get

Description

Returns the device connection string. This is the preferred way to work with the serial devices in the native
code. If you need to open the device in your code (instead of monitoring it), find the device using the Devices
collection, and query its ConnectionString property. Then pass the returned string to the CreateFile
Windows API function to get the handle to the device.

Present

TypeScript
readonly Present: boolean;

C#
bool Present { get; }

Serial Port Monitoring Control Documentation Reference

21

C++
VARIANT_BOOL Present; // get

Description

The Serial Monitoring Control's devices collection always contains all serial devices registered in your
system. Some of the devices may not be physically present or may be disabled in the Device Manager.
However those devices are still present in the Devices collection, but the Present property is false for
them. It is an error to try to attach the monitor object to the non-present device.

Type

TypeScript
readonly Type: DeviceType;

C#
DeviceType Type { get; }

C++
DeviceType Type; // get

Description

This property contains the device's type. See the DeviceType enumeration for a list of possible values.

Port

TypeScript
readonly Port: string;

C#
string Port { get; }

C++
_bstr_t Port; // get

Description

Port name.

NOTE
For several kinds of serial devices this property returns an empty string. In this case use the
ConnectionString property to get the correct device address.

Icon

TypeScript
readonly Icon: number;

C#
ulong Icon { get; }

C++
HICON Icon; // get

Serial Port Monitoring Control Documentation Reference

22

devicetype.html

Description

Use the returned icon handle to display the device class image. The icon is a system-defined icon for a device
class (port or modem). You should not destroy the returned handle with a call to DestroyObject function.

OpenedBy

TypeScript
readonly OpenedBy: boolean;

C#
bool OpenedBy { get; }

C++
VARIANT_BOOL OpenedBy; // get

Description

The Serial Monitoring Control lets you determine the name and process identifier of the process currently
having the serial device opened. This property contains the name of the process which currently has the
device opened. The returned string is in form processname (processid) where the processname is the
name of the executable file (without extension) and processid is the numeric process identifier. Both values
are the same as displayed by the Windows Task Manager. If the device is not currently opened by any
process, the returned string is empty.

IDeviceCollection Interface
Description

This interface is used to enumerate existing serial devices. It is implemented by the Serial Monitoring
Control.

You obtain this interface by taking the value of the ISerialMonitor.Devices property and use it to enumerate
the installed serial devices. There are two ways for using this interface. You can get the Count property value
to get the number of devices in the collection and then use the Item property to get the IDevice interface for
each device in a collection.

Another way of enumerating the devices in the collection is to take the value of the _NewEnum property to
get the object exposing the IEnumVARIANT interface and use its properties and methods to enumerate the
collection.

Note that usually this process is somehow automated in scripting and CLR languages.

Declaration

TypeScript
// This interface is not available in scripting environment

C#
public interface IDeviceCollection
{
 // Properties
 IDevice this[object Index] { get; set; }
 int Count { get; }
 // Methods
 IEnumerator GetEnumerator();
}

Serial Port Monitoring Control Documentation Reference

23

idevice.html

C++
struct IDeviceCollection : IDispatch
{
 // Properties
 IDevicePtr Item(const _variant_t & Index); // get set
 long Count; // get
 // Methods
 IUnknownPtr Get_NewEnum();
};

IDeviceCollection Properties

this

TypeScript
// This property is not available in scripting environment

C#
IDevice this[object Index] { get; set; }

C++
IDevicePtr Item(const _variant_t & Index); // get set

Description

Returns the device from the collection.

Count

TypeScript
// This property is not available in scripting environment

C#
int Count { get; }

C++
long Count; // get

Description

Returns the total number of devices in a collection object.

IDeviceCollection Methods

GetEnumerator

TypeScript
// This method is not available in scripting environment

C#
IEnumerator GetEnumerator();

C++
IUnknownPtr Get_NewEnum();

Description

Returns standard OLE enumerator for this object.

Serial Port Monitoring Control Documentation Reference

24

IDevice

INativeListener Interface
Description

The high-performance event interface for native (C/C++) listeners.

This is a local interface, which means that it can only be used by the in-proc binary compatible clients,
written, for example, in unmanaged C++ language.

After you first register your native listener with a call to IMonitoring.AddNativeListener method call, your
native listener is queried for its capabilities through the call to the INativeListener.GetCaps method. If it
r etu r ns ACCEPT_RAW (value is 1) value, the Serial Monitoring Control library will call the
INativeListener.ProcessRAWBuffer with a pointer to a raw buffer. The raw buffer contains unparsed
monitored data. This is the fastest method of getting data from the Serial Monitoring Control library. Using
this method, you will be able to match the performance of the HHD Software Serial Monitor application.
Note, that the raw listeners never get their OnXXX methods called. All data is passed to the
ProcessRAWBuffer method and you must parse the data in your code. If you want the control to parse data
for you, do not return ACCEPT_RAW value from the GetCaps method.

If your GetCaps method returns zero, the control will parse the monitored data and call one of the following
OnXXX methods, described below. For performance reasons, if one of the methods ever returns E_NOTIMPL
error code, the control will stop parsing the corresponding request type and stop calling not implemented
methods for your listener object. If you have multiple listeners registered for the single monitoring object,
and one of your listeners returns E_NOTIMPL for one of the events, the control still continues processing and
calling the method for other registered listeners.

Note, that the GetCaps method is called immediately after you register your listener. The control will not call
the method anymore, so you cannot change the type of the listener once it has been determined.

Declaration

TypeScript
// This interface is not available in scripting environment

C#
// This interface is not available in managed environment

C++
struct INativeListener : IDispatch
{
 // Methods
 DWORD GetCaps();
 HRESULT ProcessRAWBuffer(void * pData, DWORD Size);
 HRESULT OnConnection(FILETIME * fTime, BOOL bConnected, LPCTSTR DeviceName);
 HRESULT OnOpen(FILTIME * fTime, LPCTSTR ProcessName, ULONG ProcessId);
 HRESULT OnClosed(FILETIME * fTime);
 HRESULT OnRead(FILETIME * fTime, void * pData, ULONG Size);
 HRESULT OnWrite(FILETIME * fTime, void * pData, ULONG Size);
 HRESULT OnTransmit(FILETIME * fTime, void * pData, ULONG Size);
 HRESULT OnBaudRate(FILETIME * fTime, ULONG BaudRate, BOOL bGet);
 HRESULT OnSerialChars(FILETIME * fTime,
 UCHAR Eof,
 UCHAR Error,
 UCHAR Break,
 UCHAR Event,
 UCHAR Xon,
 UCHAR Xoff,
 BOOL bGet);
 HRESULT OnCommStatus(FILETIME * fTime,
 ULONG Errors,
 ULONG HoldReasons,

Serial Port Monitoring Control Documentation Reference

25

 ULONG HoldReasons,
 ULONG AmountInInQueue,
 ULONG AmountInOutQueue,
 BOOL EofReceived,
 BOOL WaitForImmediate);
 HRESULT OnDTRRTS(FILETIME * fTime, BOOL DTR, BOOL RTS);
 HRESULT OnHandflow(FILETIME * fTime,
 ULONG ControlHandShake,
 ULONG FlowReplace,
 ULONG XonLimit,
 ULONG XoffLimit,
 BOOL bGet);
 HRESULT OnLineControl(FILETIME * fTime,
 ULONG WordLength,
 STOPBITS StopBits,
 PARITY Parity,
 BOOL bGet);
 HRESULT OnStats(FILETIME * fTime,
 ULONG ReceivedCount,
 ULONG TransmittedCount,
 ULONG FrameErrorCount,
 ULONG SerialOverrunErrorCount,
 ULONG BufferOverrunErrorCount,
 ULONG ParityErrorCount);
 HRESULT OnTimeouts(FILETIME * fTime,
 ULONG ReadIntervalTimeout,
 ULONG ReadTotalTimeoutMultiplier,
 ULONG ReadTotalTimeoutConstant,
 ULONG WriteTotalTimeoutMultiplier,
 ULONG WriteTotalTimeoutConstant,
 BOOL bGet);
 HRESULT OnWaitMask(FILETIME * fTime, EVENTS WaitMask, BOOL bGet);
 HRESULT OnPurge(FILETIME * fTime, PURGE Purge);
 HRESULT OnSetQueueSize(FILETIME * fTime, ULONG InSize, ULONG OutSize);
 HRESULT OnSetBreak(FILETIME * fTime, BOOL bOn);
 HRESULT OnDTR(FILETIME * fTime, BOOL bSet);
 HRESULT OnReset(FILETIME * fTime);
 HRESULT OnRTS(FILETIME * fTime, BOOL bSet);
 HRESULT OnXOFF(FILETIME * fTime);
 HRESULT OnXON(FILETIME * fTime);
 HRESULT OnWaitOnMask(FILETIME * fTime, EVENTS WaitMask);
 HRESULT OnGetModemStatus(FILETIME * fTime, MODEMSTATUS ModemStatus);
 HRESULT OnGetProperties(FILETIME * fTime,
 USHORT PacketLength,
 USHORT PacketVersion,
 ULONG MaxTxQueue,
 ULONG MaxRxQueue,
 ULONG CurrentTxQueue,
 ULONG CurrentRxQueue,
 BAUDRATES MaxBaudRate,
 PROVIDERTYPE ProviderType,
 PROVIDERCAPS ProviderCaps,
 PROVIDERSETTABLE ProviderSettableParams,
 BAUDRATES SettableBaudRates,
 DATABITS_ST SettableData,
 STOPPARITY_ST SettableStopParity);
 HRESULT OnClearStats(FILETIME * fTime);
};

INativeListener Methods

GetCaps

TypeScript
// This method is not available in scripting environment

Serial Port Monitoring Control Documentation Reference

26

C#
// This method is not available in managed environment

C++
DWORD GetCaps();

Description

Return the listener capabilities to the Monitor. If your listener returns ACCEPT_RAW value, it is considered the
raw listener. The library will not parse the monitored data for a raw listener, instead, it will pass all data
(buffered) to the INativeListener.ProcessRAWBuffer method.

This method is called only once.

ProcessRAWBuffer

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT ProcessRAWBuffer(void * pData, DWORD Size);

Parameters

pData

Pointer to a raw data.
Size

The size of the buffer pointed to by the pData parameter.

Description

Called by the control to process the monitored events at the lowest possible level. You will find the
documentation for the raw processing in a separate topic.

OnConnection

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnConnection(FILETIME * fTime, BOOL bConnected, LPCTSTR DeviceName);

Parameters

fTime

The time of the event.
bConnected

The connection state. Indicates whether the monitor is connecting to the device, or disconnecting from
it. See the ConnectionState enumeration for more information.

Serial Port Monitoring Control Documentation Reference

27

connectionstate.html

DeviceName

Pointer to the null-terminated name of the serial device the monitor is connecting to (disconnecting
from).

Description

Called when the control attaches/detaches itself to/from the serial device.

OnOpen

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnOpen(FILTIME * fTime, LPCTSTR ProcessName, ULONG ProcessId);

Parameters

fTime

The time of the event.
ProcessName

Pointer to the null-terminated string containing the name of the process opening the device.
ProcessId

The process identifier.

Description

Called when the device is opened by monitored application.

OnClosed

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClosed(FILETIME * fTime);

Parameters

fTime

The time of the event.

Description

Called when the device is closed by monitored application.

OnRead

Serial Port Monitoring Control Documentation Reference

28

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnRead(FILETIME * fTime, void * pData, ULONG Size);

Parameters

fTime

The time of the event.
pData

Pointer to the data read by the application in one function call.
Size

The size of the buffer pointed to by the pData parameter.

Description

Called when the monitored application is reading data.

OnWrite

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnWrite(FILETIME * fTime, void * pData, ULONG Size);

Parameters

fTime

The time of the event.
pData

Pointer to the data written by the application in one function call.
Size

The size of the buffer pointed to by the pData parameter.

Description

Called when the monitored application is writing data.

OnTransmit

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

Serial Port Monitoring Control Documentation Reference

29

C++
HRESULT OnTransmit(FILETIME * fTime, void * pData, ULONG Size);

Parameters

fTime

The time of the event.
pData

Pointer to the data transmitted by the application in one function call.
Size

The size of the buffer pointed to by the pData parameter.

Description

Called when the monitored application is transmitting data.

OnBaudRate

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnBaudRate(FILETIME * fTime, ULONG BaudRate, BOOL bGet);

Parameters

fTime

The time of the event.
BaudRate

Baud rate to set or get.
bGet

TRUE if application is reading current baud rate, or FALSE if it is changing it.

Description

Called when the monitored application retrieves/sets current baud rate.

OnSerialChars

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

Serial Port Monitoring Control Documentation Reference

30

C++
HRESULT OnSerialChars(FILETIME * fTime,
 UCHAR Eof,
 UCHAR Error,
 UCHAR Break,
 UCHAR Event,
 UCHAR Xon,
 UCHAR Xoff,
 BOOL bGet);

Parameters

fTime

The time of the event.
Eof

EOF character.
Error

ERROR character.
Break

BREAK character.
Event

EVENT character.
Xon

XON character.
Xoff

XOFF character.
bGet

TRUE if application is reading special characters, or FALSE if it is changing them.

Description

Called when the monitored application retrieves/sets special serial characters.

OnCommStatus

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnCommStatus(FILETIME * fTime,
 ULONG Errors,
 ULONG HoldReasons,
 ULONG AmountInInQueue,
 ULONG AmountInOutQueue,
 BOOL EofReceived,
 BOOL WaitForImmediate);

Parameters

fTime

Serial Port Monitoring Control Documentation Reference

31

The time of the event.
Errors

The number of errors for the port.
HoldReasons

The number of hold reasons on the port.
AmountInInQueue

Amount of data in the input queue, in bytes.
AmountInOutQueue

Amount of data in the output queue, in bytes.
EofReceived

TRUE if the EOF has been received.
WaitForImmediate

TRUE if the port is in wait state.

Description

Called when the monitored application reads the comm port status.

OnDTRRTS

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnDTRRTS(FILETIME * fTime, BOOL DTR, BOOL RTS);

Parameters

fTime

The time of the event.
DTR

DTR line state.
RTS

RTS line state.

Description

Called when the monitored application retrieves DTR and RTS line states.

OnHandflow

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

Serial Port Monitoring Control Documentation Reference

32

C++
HRESULT OnHandflow(FILETIME * fTime,
 ULONG ControlHandShake,
 ULONG FlowReplace,
 ULONG XonLimit,
 ULONG XoffLimit,
 BOOL bGet);

Parameters

fTime

The time of the event.
ControlHandShake

ControlHandShake
FlowReplace

FlowReplace
XonLimit

XonLimit
XoffLimit

XoffLimit
bGet

TRUE if the application reads the handshake information or FALSE otherwise.

OnLineControl

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnLineControl(FILETIME * fTime,
 ULONG WordLength,
 STOPBITS StopBits,
 PARITY Parity,
 BOOL bGet);

Parameters

fTime

The time of the event.
WordLength

Byte size.
StopBits

Stop bits. One of the values from the STOPBITS enumeration.
Parity

Parity. One of the values from the PARITY enumeration.
bGet

TRUE if the application reads the line control settings, FALSE if writes it.

Serial Port Monitoring Control Documentation Reference

33

stopbits.html
parity.html

Description

Called when the monitored application retrieves/sets the line control options (such as stop bits, parity and
word length).

OnStats

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnStats(FILETIME * fTime,
 ULONG ReceivedCount,
 ULONG TransmittedCount,
 ULONG FrameErrorCount,
 ULONG SerialOverrunErrorCount,
 ULONG BufferOverrunErrorCount,
 ULONG ParityErrorCount);

Parameters

fTime

The time of the event.
ReceivedCount

The number of received bytes.
TransmittedCount

The number of transmitted bytes.
FrameErrorCount

The number of frame errors.
SerialOverrunErrorCount

The number of serial overrun errors.
BufferOverrunErrorCount

The number of buffer overrun errors.
ParityErrorCount

The number of parity errors.

Description

Called when the monitored application reads port statistics.

OnTimeouts

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

Serial Port Monitoring Control Documentation Reference

34

C++
HRESULT OnTimeouts(FILETIME * fTime,
 ULONG ReadIntervalTimeout,
 ULONG ReadTotalTimeoutMultiplier,
 ULONG ReadTotalTimeoutConstant,
 ULONG WriteTotalTimeoutMultiplier,
 ULONG WriteTotalTimeoutConstant,
 BOOL bGet);

Parameters

fTime

The time of the event.
ReadIntervalTimeout

Read interval timeout.
ReadTotalTimeoutMultiplier

Read total timeout multiplier.
ReadTotalTimeoutConstant

Read total timeout constant.
WriteTotalTimeoutMultiplier

Write total timeout multiplier.
WriteTotalTimeoutConstant

Write total timeout constant.
bGet

TRUE if the application reads this information or FALSE otherwise.

Description

Called when the monitored application retrieves/sets port timeouts.

OnWaitMask

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnWaitMask(FILETIME * fTime, EVENTS WaitMask, BOOL bGet);

Parameters

fTime

The time of the event.
WaitMask

The wait mask. See the EVENTS enumeration.
bGet

TRUE if the monitored application reads the wait mask or FALSE otherwise.

Description

Serial Port Monitoring Control Documentation Reference

35

events.html

Called when the monitored application retrieves/sets the wait mask.

OnPurge

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnPurge(FILETIME * fTime, PURGE Purge);

Parameters

fTime

The time of the event.
Purge

The bit mask indicating what data to purge. See the PURGE enumeration for more information.

Description

Called when the monitored application purges the port.

OnSetQueueSize

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetQueueSize(FILETIME * fTime, ULONG InSize, ULONG OutSize);

Parameters

fTime

The time of the event.
InSize

The size of the input queue.
OutSize

The size of the output queue.

Description

Called when the monitored application sets queue sizes.

OnSetBreak

TypeScript
// This method is not available in scripting environment

Serial Port Monitoring Control Documentation Reference

36

purge.html

C#
// This method is not available in managed environment

C++
HRESULT OnSetBreak(FILETIME * fTime, BOOL bOn);

Parameters

fTime

The time of the event.
bOn

TRUE if application sets the break signal, or FALSE otherwise.

Description

Called when the monitored application sets/resets the break signal.

OnDTR

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnDTR(FILETIME * fTime, BOOL bSet);

Parameters

fTime

The time of the event.
bSet

TRUE if the application sets the DTR line state, or FALSE if the application resets it.

Description

Called when the monitored application sets/resets DTR line state.

OnReset

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnReset(FILETIME * fTime);

Parameters

fTime

The time of the event.

Serial Port Monitoring Control Documentation Reference

37

Description

Called when the monitored application resets the port.

OnRTS

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnRTS(FILETIME * fTime, BOOL bSet);

Parameters

fTime

The time of the event.
bSet

TRUE if the application sets the RTS line state, or FALSE if the application resets it.

Description

Called when the monitored application sets/resets RTS line state.

OnXOFF

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnXOFF(FILETIME * fTime);

Parameters

fTime

The time of the event.

Description

Called when the monitored application sends the XOFF character.

OnXON

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnXON(FILETIME * fTime);

Serial Port Monitoring Control Documentation Reference

38

Parameters

fTime

The time of the event.

Description

Called when the monitored application sends the XON character.

OnWaitOnMask

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnWaitOnMask(FILETIME * fTime, EVENTS WaitMask);

Parameters

fTime

The time of the event.
WaitMask

The wait mask to wait. See the EVENTS enumeration for more information.

Description

Called when the monitored application waits on mask.

OnGetModemStatus

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetModemStatus(FILETIME * fTime, MODEMSTATUS ModemStatus);

Parameters

fTime

The time of the event.
ModemStatus

The modem status is returned as a combination of flags in the MODEMSTATUS enumeration.

Description

Called when the monitored application reads the modem status.

OnGetProperties

Serial Port Monitoring Control Documentation Reference

39

events.html
modemstatus.html

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetProperties(FILETIME * fTime,
 USHORT PacketLength,
 USHORT PacketVersion,
 ULONG MaxTxQueue,
 ULONG MaxRxQueue,
 ULONG CurrentTxQueue,
 ULONG CurrentRxQueue,
 BAUDRATES MaxBaudRate,
 PROVIDERTYPE ProviderType,
 PROVIDERCAPS ProviderCaps,
 PROVIDERSETTABLE ProviderSettableParams,
 BAUDRATES SettableBaudRates,
 DATABITS_ST SettableData,
 STOPPARITY_ST SettableStopParity);

Parameters

fTime

The time of the event.
PacketLength

The packet length, in bytes.
PacketVersion

The packet version.
MaxTxQueue

Maximum transmit queue size, in bytes.
MaxRxQueue

Maximum receive queue size, in bytes.
CurrentTxQueue

Current transmit queue size, in bytes.
CurrentRxQueue

Current receive queue size, in bytes.
MaxBaudRate

Maximum baud rate.
ProviderType

Provider type. See the PROVIDERTYPE enumeration for more information.
ProviderCaps

Provider capabilities. See the PROVIDERCAPS enumeration for more information.
ProviderSettableParams

Provider settable parameters. Indicates what port parameters may be set for a given device. See the
PROVIDERSETTABLE enumeration for more information.

SettableBaudRates

The bit mask indicating what baud rates are supported for a given device. See the BAUDRATES
enumeration for more information.

Serial Port Monitoring Control Documentation Reference

40

providertype.html
providercaps.html
providersettable.html
baudrates.html

SettableData

The bit mask indicating what data bits are supported for a given device. See the DATABITS_ST
enumeration for more information.

SettableStopParity

The bit mask indicating what stop bits and parity are supported for a given device. See the
STOPPARITY_ST enumeration for more information.

Description

Called when the monitored application retrieves the comm properties.

OnClearStats

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClearStats(FILETIME * fTime);

Parameters

fTime

The time of the event.

Description

Called when the monitored application clears the statistics.

_ISerialMonitorEvents Interface
Description

You implement this interface to receive events fired by the Serial Monitor Control library's main object. The
Serial Monitor Control calls the _ISerialMonitorEvents.OnChange method when there is a change in the
device collection entries. Please see documentation for the _IMonitoringEvents interface for information on
binding to the event source.

Declaration

TypeScript
// This interface is not available in scripting environment

C#
public interface _ISerialMonitorEvents
{
 // Methods
 void OnChange();
}

Serial Port Monitoring Control Documentation Reference

41

databits_st.html
stopparity_st.html
_imonitoringevents.html

C++
struct _ISerialMonitorEvents : IDispatch
{
 // Methods
 HRESULT OnChange();
};

_ISerialMonitorEvents Methods

OnChange

TypeScript
// This method is not available in scripting environment

C#
void OnChange();

C++
HRESULT OnChange();

Description

Fired when device appears or disappears.

_IMonitoringEvents Interface
Description

An event source interface for managed and scripting clients. You do not explicitly implement this interface. It
is usually implemented by the language runtime. You register the so-called “events”, one for each method of
this interface to handle specific monitored requests.

This interface is used by managed clients. The language runtime usually uses the methods of this interface
automatically, allowing the client to register events, callbacks or delegates, which are called when the Serial
Monitoring Control library fires these events. There is a proprietary interface in each managed language to
connect to event sources. You will see Microsoft C# examples in this documentation, for other languages,
please consult their documentation for a proper syntax to handle events.

Declaration

TypeScript
// This interface is not available in scripting environment

Serial Port Monitoring Control Documentation Reference

42

C#
public interface _IMonitoringEvents
{
 // Methods
 void OnConnection(DateTime time, ConnectionState cs, string Name);
 void OnOpen(DateTime time, string Name, uint ProcessId);
 void OnClose(DateTime time);
 void OnRead(DateTime time, Array array);
 void OnWrite(DateTime time, Array array);
 void OnTransmit(DateTime time, Array array);
 void OnBaudRate(DateTime time, uint BaudRate, bool bGet);
 void OnSerialChars(DateTime fTime, byte Eof, byte Error, byte Break, byte Event, byte Xon, byte
 void OnCommStatus(DateTime fTime,
 uint Errors,
 uint HoldReasons,
 uint AmountInInQueue,
 uint AmountInOutQueue,
 bool EofReceived,
 bool WaitForImmediate);
 void OnDTRRTS(DateTime fTime, bool DTR, bool RTS);
 void OnHandflow(DateTime fTime, uint ControlHandShake, uint FlowReplace, uint XonLimit, uint XoffLimit,
 void OnLineControl(DateTime fTime, uint WordLength, STOPBITS StopBits, PARITY Parity, bool bGet
 void OnStats(DateTime fTime,
 uint ReceivedCount,
 uint TransmittedCount,
 uint FrameErrorCount,
 uint SerialOverrunErrorCount,
 uint BufferOverrunErrorCount,
 uint ParityErrorCount);
 void OnTimeouts(DateTime fTime,
 uint ReadIntervalTimeout,
 uint ReadTotalTimeoutMultiplier,
 uint ReadTotalTimeoutConstant,
 uint WriteTotalTimeoutMultiplier,
 uint WriteTotalTimeoutConstant,
 bool bGet);
 void OnWaitMask(DateTime fTime, EVENTS WaitMask, bool bGet);
 void OnPurge(DateTime fTime, PURGE Purge);
 void OnSetQueueSize(DateTime fTime, uint InSize, uint OutSize);
 void OnSetBreak(DateTime fTime, bool bOn);
 void OnDTR(DateTime fTime, bool bSet);
 void OnReset(DateTime fTime);
 void OnRTS(DateTime fTime, bool bSet);
 void OnXOFF(DateTime fTime);
 void OnXON(DateTime fTime);
 void OnWaitOnMask(DateTime fTime, EVENTS WaitMask);
 void OnGetModemStatus(DateTime fTime, MODEMSTATUS ModemStatus);
 void OnGetProperties(DateTime fTime,
 ushort PacketLength,
 ushort PacketVersion,
 uint MaxTxQueue,
 uint MaxRxQueue,
 uint CurrentTxQueue,
 uint CurrentRxQueue,
 BAUDRATES MaxBaudRate,
 PROVIDERTYPE ProviderType,
 PROVIDERCAPS ProviderCaps,
 PROVIDERSETTABLE ProviderSettableParams,
 BAUDRATES SettableBaudRates,
 DATABITS_ST SettableData,
 STOPPARITY_ST SettableStopParity);
 void OnClearStats(DateTime fTime);
}

C++
// This interface is not available in native environment

Serial Port Monitoring Control Documentation Reference

43

_IMonitoringEvents Methods

OnConnection

TypeScript
// This method is not available in scripting environment

C#
void OnConnection(DateTime time, ConnectionState cs, string Name);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
cs

The connection state. Indicates whether the monitor is connecting to the device, or disconnecting from
it. See the ConnectionState enumeration for more information.

Name

The name of the serial device the monitor is connecting to (disconnecting from).

Description

Fired when the monitor object attaches/detaches itself to/from the serial device.

OnOpen

TypeScript
// This method is not available in scripting environment

C#
void OnOpen(DateTime time, string Name, uint ProcessId);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
Name

String containing the name of the process opening the device.
ProcessId

The process identifier.

Description

Fired when the device is opened by the monitored application.

OnClose

Serial Port Monitoring Control Documentation Reference

44

connectionstate.html

TypeScript
// This method is not available in scripting environment

C#
void OnClose(DateTime time);

C++
// This method is not available in native environment

Parameters

time

The time of the event.

Description

Fired when the device is closed by the monitored application.

OnRead

TypeScript
// This method is not available in scripting environment

C#
void OnRead(DateTime time, Array array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

The data array. Contains the data read by the application in one function call. This parameter is a byte
array.

Description

Called when the monitored application is reading data.

Example

Binding the OnRead event in C#:

C#
// Binding the event handler
monitor.OnRead += (time, array)=>
{
 var data = (byte[]) array; // cast the object array to the byte array
 for (int i = 0; i < data.Length; i++) // read and process data
 ProcessCharacter(data[i]);
};

OnWrite

Serial Port Monitoring Control Documentation Reference

45

TypeScript
// This method is not available in scripting environment

C#
void OnWrite(DateTime time, Array array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

The data array. Contains the data written by the application in one function call. This parameter is a byte
array.

Description

Called when the monitored application is writing data.

OnTransmit

TypeScript
// This method is not available in scripting environment

C#
void OnTransmit(DateTime time, Array array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

The data array. Contains the data transmitted by the application in one function call. This parameter is a
byte array.

Description

Called when the monitored application is transmitting data.

OnBaudRate

TypeScript
// This method is not available in scripting environment

C#
void OnBaudRate(DateTime time, uint BaudRate, bool bGet);

C++
// This method is not available in native environment

Serial Port Monitoring Control Documentation Reference

46

Parameters

time

The time of the event.
BaudRate

The baud rate to set or get.
bGet

true if application is reading current baud rate, or false if it is changing it.

Description

Called when the monitored application retrieves/sets current baud rate.

OnSerialChars

TypeScript
// This method is not available in scripting environment

C#
void OnSerialChars(DateTime fTime, byte Eof, byte Error, byte Break, byte Event, byte Xon, byte Xoff,

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
Eof

EOF character.
Error

ERROR character.
Break

BREAK character.
Event

EVENT character.
Xon

XON character.
Xoff

XOFF character.
bGet

true if application is reading special characters, or false if it is changing them.

Description

Fired when the monitored application retrieves/sets special serial characters.

OnCommStatus

Serial Port Monitoring Control Documentation Reference

47

TypeScript
// This method is not available in scripting environment

C#
void OnCommStatus(DateTime fTime,
 uint Errors,
 uint HoldReasons,
 uint AmountInInQueue,
 uint AmountInOutQueue,
 bool EofReceived,
 bool WaitForImmediate);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
Errors

The number of errors for the port.
HoldReasons

The number of hold reasons on the port.
AmountInInQueue

Amount of data in the input queue, in bytes.
AmountInOutQueue

Amount of data in the output queue, in bytes.
EofReceived

true if the EOF has been received.
WaitForImmediate

true if the port is in wait state.

Description

Fired when the monitored application reads the comm port status.

OnDTRRTS

TypeScript
// This method is not available in scripting environment

C#
void OnDTRRTS(DateTime fTime, bool DTR, bool RTS);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
DTR

Serial Port Monitoring Control Documentation Reference

48

DTR line state.
RTS

RTS line state.

Description

Fired when the monitored application retrieves DTR and RTS line states.

OnHandflow

TypeScript
// This method is not available in scripting environment

C#
void OnHandflow(DateTime fTime, uint ControlHandShake, uint FlowReplace, uint XonLimit, uint XoffLimit,

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
ControlHandShake

ControlHandShake
FlowReplace

FlowReplace
XonLimit

XonLimit
XoffLimit

XoffLimit
bGet

true if the application reads the handshake information or false otherwise.

OnLineControl

TypeScript
// This method is not available in scripting environment

C#
void OnLineControl(DateTime fTime, uint WordLength, STOPBITS StopBits, PARITY Parity, bool bGet);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.

Serial Port Monitoring Control Documentation Reference

49

WordLength

Byte size.
StopBits

Stop bits. One of the values from the STOPBITS enumeration.
Parity

Parity. One of the values from the PARITY enumeration.
bGet

true if the application reads the line control settings, false if writes it.

Description

Fired when the monitored application retrieves/sets the line control options (such as stop bits, parity and
word length).

OnStats

TypeScript
// This method is not available in scripting environment

C#
void OnStats(DateTime fTime,
 uint ReceivedCount,
 uint TransmittedCount,
 uint FrameErrorCount,
 uint SerialOverrunErrorCount,
 uint BufferOverrunErrorCount,
 uint ParityErrorCount);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
ReceivedCount

The number of received bytes.
TransmittedCount

The number of transmitted bytes.
FrameErrorCount

The number of frame errors.
SerialOverrunErrorCount

The number of serial overrun errors.
BufferOverrunErrorCount

The number of buffer overrun errors.
ParityErrorCount

The number of parity errors.

Description

Fired when the monitored application reads port statistics.

Serial Port Monitoring Control Documentation Reference

50

stopbits.html
parity.html

OnTimeouts

TypeScript
// This method is not available in scripting environment

C#
void OnTimeouts(DateTime fTime,
 uint ReadIntervalTimeout,
 uint ReadTotalTimeoutMultiplier,
 uint ReadTotalTimeoutConstant,
 uint WriteTotalTimeoutMultiplier,
 uint WriteTotalTimeoutConstant,
 bool bGet);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
ReadIntervalTimeout

Read interval timeout.
ReadTotalTimeoutMultiplier

Read total timeout multiplier.
ReadTotalTimeoutConstant

Read total timeout constant.
WriteTotalTimeoutMultiplier

Write total timeout multiplier.
WriteTotalTimeoutConstant

Write total timeout constant.
bGet

true if the application reads this information or false otherwise.

Description

Fired when the monitored application retrieves/sets port timeouts.

OnWaitMask

TypeScript
// This method is not available in scripting environment

C#
void OnWaitMask(DateTime fTime, EVENTS WaitMask, bool bGet);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.

Serial Port Monitoring Control Documentation Reference

51

WaitMask

The wait mask. See the EVENTS enumeration.
bGet

true if the monitored application reads the wait mask or false otherwise.

Description

Fired when the monitored application retrieves/sets the wait mask.

OnPurge

TypeScript
// This method is not available in scripting environment

C#
void OnPurge(DateTime fTime, PURGE Purge);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
Purge

The bit mask indicating what data to purge. See the PURGE enumeration for more information.

Description

Fired when the monitored application purges the port.

OnSetQueueSize

TypeScript
// This method is not available in scripting environment

C#
void OnSetQueueSize(DateTime fTime, uint InSize, uint OutSize);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
InSize

The size of the input queue.
OutSize

The size of the output queue.

Description

Fired when the monitored application sets queue sizes.

Serial Port Monitoring Control Documentation Reference

52

events.html
purge.html

OnSetBreak

TypeScript
// This method is not available in scripting environment

C#
void OnSetBreak(DateTime fTime, bool bOn);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
bOn

true if application sets the break signal, or false otherwise.

Description

Fired when the monitored application sets/resets the break signal.

OnDTR

TypeScript
// This method is not available in scripting environment

C#
void OnDTR(DateTime fTime, bool bSet);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
bSet

true if the application sets the DTR line state, or false if the application resets it.

Description

Fired when the monitored application sets/resets DTR line state.

OnReset

TypeScript
// This method is not available in scripting environment

C#
void OnReset(DateTime fTime);

C++
// This method is not available in native environment

Serial Port Monitoring Control Documentation Reference

53

Parameters

fTime

The time of the event.

Description

Fired when the monitored application resets the port.

OnRTS

TypeScript
// This method is not available in scripting environment

C#
void OnRTS(DateTime fTime, bool bSet);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
bSet

true if the application sets the RTS line state, or false if the application resets it.

Description

Fired when the monitored application sets/resets RTS line state.

OnXOFF

TypeScript
// This method is not available in scripting environment

C#
void OnXOFF(DateTime fTime);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.

Description

Fired when the monitored application sends the XOFF character.

OnXON

TypeScript
// This method is not available in scripting environment

Serial Port Monitoring Control Documentation Reference

54

C#
void OnXON(DateTime fTime);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.

Description

Fired when the monitored application sends the XON character.

OnWaitOnMask

TypeScript
// This method is not available in scripting environment

C#
void OnWaitOnMask(DateTime fTime, EVENTS WaitMask);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
WaitMask

The wait mask to wait. See the EVENTS enumeration for more information.

Description

Fired when the monitored application waits on mask.

OnGetModemStatus

TypeScript
// This method is not available in scripting environment

C#
void OnGetModemStatus(DateTime fTime, MODEMSTATUS ModemStatus);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
ModemStatus

The modem status is returned as a combination of flags in the MODEMSTATUS enumeration.

Serial Port Monitoring Control Documentation Reference

55

events.html
modemstatus.html

Description

Fired when the monitored application reads the modem status.

OnGetProperties

TypeScript
// This method is not available in scripting environment

C#
void OnGetProperties(DateTime fTime,
 ushort PacketLength,
 ushort PacketVersion,
 uint MaxTxQueue,
 uint MaxRxQueue,
 uint CurrentTxQueue,
 uint CurrentRxQueue,
 BAUDRATES MaxBaudRate,
 PROVIDERTYPE ProviderType,
 PROVIDERCAPS ProviderCaps,
 PROVIDERSETTABLE ProviderSettableParams,
 BAUDRATES SettableBaudRates,
 DATABITS_ST SettableData,
 STOPPARITY_ST SettableStopParity);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.
PacketLength

The packet length, in bytes.
PacketVersion

The packet version.
MaxTxQueue

Maximum transmit queue size, in bytes.
MaxRxQueue

Maximum receive queue size, in bytes.
CurrentTxQueue

Current transmit queue size, in bytes.
CurrentRxQueue

Current receive queue size, in bytes.
MaxBaudRate

Maximum baud rate.
ProviderType

Provider type. See the PROVIDERTYPE enumeration for more information.
ProviderCaps

Provider capabilities. See the PROVIDERCAPS enumeration for more information.
ProviderSettableParams

Serial Port Monitoring Control Documentation Reference

56

providertype.html
providercaps.html

Provider settable parameters. Indicates what port parameters may be set for a given device. See the
PROVIDERSETTABLE enumeration for more information.

SettableBaudRates

The bit mask indicating what baud rates are supported for a given device. See the BAUDRATES
enumeration for more information.

SettableData

The bit mask indicating what data bits are supported for a given device. See the DATABITS_ST
enumeration for more information.

SettableStopParity

The bit mask indicating what stop bits and parity are supported for a given device. See the
STOPPARITY_ST enumeration for more information.

Description

Fired when the monitored application retrieves the comm properties.

OnClearStats

TypeScript
// This method is not available in scripting environment

C#
void OnClearStats(DateTime fTime);

C++
// This method is not available in native environment

Parameters

fTime

The time of the event.

Description

Fired when the monitored application clears the statistics.

DeviceType Enumeration
Symbol Value Description
DEVICETYPE_UNKNOWN 0x00000000 The type of the device is unknown.
DEVICETYPE_PORT 0x00000001 The device is a standard serial communication

port.
DEVICETYPE_MODEM 0x00000002 The device is a standard modem.
DEVICETYPE_BOTH 0x00000003 The device behaves as a communication port and

as a modem.

BAUDRATES Enumeration
Description

Baud rate settable parameters.

Serial Port Monitoring Control Documentation Reference

57

providersettable.html
baudrates.html
databits_st.html
stopparity_st.html

Symbol Value Description
HHD_BAUD_075 0x00000001 75 bps
HHD_BAUD_110 0x00000002 110 bps
HHD_BAUD_134_5 0x00000004 134.5 bps
HHD_BAUD_150 0x00000008 150 bps
HHD_BAUD_300 0x00000010 300 bps
HHD_BAUD_600 0x00000020 600 bps
HHD_BAUD_1200 0x00000040 1200 bps
HHD_BAUD_1800 0x00000080 1800 bps
HHD_BAUD_2400 0x00000100 2400 bps
HHD_BAUD_4800 0x00000200 4800 bps
HHD_BAUD_7200 0x00000400 7200 bps
HHD_BAUD_9600 0x00000800 9600 bps
HHD_BAUD_14400 0x00001000 14400 bps
HHD_BAUD_19200 0x00002000 19200 bps
HHD_BAUD_38400 0x00004000 38400 bps
HHD_BAUD_56K 0x00008000 56 Kbps
HHD_BAUD_128K 0x00010000 128 Kbps
HHD_BAUD_115200 0x00020000 115200 bps
HHD_BAUD_57600 0x00040000 57600 bps
HHD_BAUD_USER 0x10000000 Programmable baud rate

DATABITS_ST Enumeration
Description

Data bits settable parameters (bit mask)

Symbol Value Description
HHD_DATABITS_5 0x00000001 5 data bits
HHD_DATABITS_6 0x00000002 6 data bits
HHD_DATABITS_7 0x00000004 7 data bits
HHD_DATABITS_8 0x00000008 8 data bits
HHD_DATABITS_16 0x00000010 16 data bits
HHD_DATABITS_16X 0x00000020 Special wide path through serial hardware lines

EVENTS Enumeration

Serial Port Monitoring Control Documentation Reference

58

Symbol Value Description
HHD_SERIAL_EV_RXCHAR 0x00000001 Any Character received
HHD_SERIAL_EV_RXFLAG 0x00000002 Received certain character
HHD_SERIAL_EV_TXEMPTY 0x00000004 Transmitt Queue Empty
HHD_SERIAL_EV_CTS 0x00000008 CTS changed state
HHD_SERIAL_EV_DSR 0x00000010 DSR changed state
HHD_SERIAL_EV_RLSD 0x00000020 RLSD changed state
HHD_SERIAL_EV_BREAK 0x00000040 BREAK received
HHD_SERIAL_EV_ERR 0x00000080 Line status error occurred
HHD_SERIAL_EV_RING 0x00000100 Ring signal detected
HHD_SERIAL_EV_PERR 0x00000200 Printer error occured
HHD_SERIAL_EV_RX80FULL 0x00000400 Receive buffer is 80 percent full
HHD_SERIAL_EV_EVENT1 0x00000800 Provider specific event 1
HHD_SERIAL_EV_EVENT2 0x00001000 Provider specific event 2

MODEMSTATUS Enumeration
Description

Modem status flags. These masks are used to access the modem status register. Whenever one of the first
four bits in the modem status register changes state a modem status interrupt is generated.

Symbol Value Description
HHD_SERIAL_MSR_DCTS 0x00000001 This bit is the delta clear to send. It is used to

indicate that the clear to send bit (in this register)
has changed since this register was last read by
the CPU.

HHD_SERIAL_MSR_DDSR 0x00000002 This bit is the delta data set ready. It is used to
indicate that the data set ready bit (in this
register) has changed since this register was last
read by the CPU.

HHD_SERIAL_MSR_TERI 0x00000004 This is the trailing edge ring indicator. It is used
to indicate that the ring indicator input has
changed from a low to high state.

HHD_SERIAL_MSR_DDCD 0x00000008 This bit is the delta data carrier detect. It is used
to indicate that the data carrier bit (in this
register) has changed since this register was last
read by the CPU.

HHD_SERIAL_MSR_CTS 0x00000010 This bit contains the (complemented) state of the
clear to send (CTS) line.

HHD_SERIAL_MSR_DSR 0x00000020 This bit contains the (complemented) state of the
data set ready (DSR) line.

HHD_SERIAL_MSR_RI 0x00000040 This bit contains the (complemented) state of the
ring indicator (RI) line.

HHD_SERIAL_MSR_DCD 0x00000080 This bit contains the (complemented) state of the
data carrier detect (DCD) line.

PARITY Enumeration

Serial Port Monitoring Control Documentation Reference

59

Symbol Value Description
HHD_NO_PARITY 0x00000000 No parity.
HHD_ODD_PARITY 0x00000001 Odd parity.
HHD_EVEN_PARITY 0x00000002 Even parity.
HHD_MARK_PARITY 0x00000003 Mark parity.
HHD_SPACE_PARITY 0x00000004 Space parity.

PROVIDERCAPS Enumeration
Description

Provider capabilities flags.

Symbol Value Description
HHD_PCF_DTRDSR 0x00000001 DTR (data-terminal-ready)/DSR (data-set-

ready) supported
HHD_PCF_RTSCTS 0x00000002 RTS (request-to-send)/CTS (clear-to-send)

supported
HHD_PCF_RLSD 0x00000004 RLSD (receive-line-signal-detect) supported
HHD_PCF_PARITY_CHECK 0x00000008 Parity checking supported
HHD_PCF_XONXOFF 0x00000010 XON/XOFF flow control supported
HHD_PCF_SETXCHAR 0x00000020 Settable XON/XOFF supported
HHD_PCF_TOTALTIMEOUTS 0x00000040 Total (elapsed) time-outs supported
HHD_PCF_INTTIMEOUTS 0x00000080 Interval time-outs supported
HHD_PCF_SPECIALCHARS 0x00000100 Special character support provided
HHD_PCF_16BITMODE 0x00000200 Special 16-bit mode supported

PROVIDERSETTABLE Enumeration
Description

Settable provider parameters.

Symbol Value Description
HHD_SP_PARITY 0x00000001 Parity
HHD_SP_BAUD 0x00000002 Baud rate
HHD_SP_DATABITS 0x00000004 Data bits
HHD_SP_STOPBITS 0x00000008 Stop bits
HHD_SP_HANDSHAKING 0x00000010 Handshaking (flow control)
HHD_SP_PARITY_CHECK 0x00000020 Parity checking
HHD_SP_RLSD 0x00000040 RLSD (receive-line-signal-detect)

PROVIDERTYPE Enumeration

Serial Port Monitoring Control Documentation Reference

60

Symbol Value Description
HHD_PST_UNSPECIFIED 0x00000000 Unspecified
HHD_PST_RS232 0x00000001 RS-232 serial port
HHD_PST_PARALLELPORT 0x00000002 Parallel port
HHD_PST_RS422 0x00000003 RS-422 port
HHD_PST_RS423 0x00000004 RS-423 port
HHD_PST_RS449 0x00000005 RS-449 port
HHD_PST_MODEM 0x00000006 Modem device
HHD_PST_FAX 0x00000021 FAX device
HHD_PST_SCANNER 0x00000022 Scanner device
HHD_PST_NETWORK_BRIDGE 0x00000100 Unspecified network bridge
HHD_PST_LAT 0x00000101 LAT protocol
HHD_PST_TCPIP_TELNET 0x00000102 TCP/IP telnet protocol
HHD_PST_X25 0x00000103 X.25 standards

PURGE Enumeration
Symbol Value Description
HHD_SERIAL_PURGE_TXABORT 0x00000001 Terminates all outstanding overlapped

write operations and returns immediately,
even if the write operations have not been
completed.

HHD_SERIAL_PURGE_RXABORT 0x00000002 Terminates all outstanding overlapped
read operations and returns immediately,
even if the read operations have not been
completed.

HHD_SERIAL_PURGE_TXCLEAR 0x00000004 Clears the output buffer (if the device
driver has one).

HHD_SERIAL_PURGE_RXCLEAR 0x00000008 Clears the input buffer (if the device driver
has one).

STOPBITS Enumeration
Symbol Value Description
HHD_STOP_BIT_1 0x00000000 1 stop bit
HHD_STOP_BITS_1_5 0x00000001 1.5 stop bits
HHD_STOP_BITS_2 0x00000002 2 stop bits

STOPPARITY_ST Enumeration

Serial Port Monitoring Control Documentation Reference

61

Symbol Value Description
HHD_STOPBITS_10 0x00000001 1 stop bit
HHD_STOPBITS_15 0x00000002 1.5 stop bits
HHD_STOPBITS_20 0x00000004 2 stop bits
HHD_PARITY_NONE 0x00000100 No parity
HHD_PARITY_ODD 0x00000200 Odd parity
HHD_PARITY_EVEN 0x00000400 Even parity
HHD_PARITY_MARK 0x00000800 Mark parity
HHD_PARITY_SPACE 0x00001000 Space parity

ConnectionState Enumeration
Symbol Value Description
DeviceDisconnected 0x00000000 Illustrates that the device the monitor attached to

has been disconnected from the system.
DeviceConnected 0x00000001 Illustrates that the device the monitor has

connected to the device.

Serial Port Monitoring Control Documentation Reference

62

	Table of Contents
	Getting Started
	Library Features
	Licensing
	Installation
	Library Redistribution Policy
	General Library Distribution Information
	Distribution of the original SPMC installation package.
	Library Redistribution

	Activating the Redistributed Library

	Activating Serial Port Monitoring Control

	Using SPMC
	Usage Environments
	Native Environment
	Managed Environment

	General Guidelines
	Native Conventions
	Dual Interfaces
	INativeListener Local Interface
	Time Values
	INativeListener Methods Parameters

	Managed Conventions
	Dual Interfaces
	Event Interfaces

	How To
	How To Initialize the SPMC Library
	Native Environment
	Managed Environment

	How To Enumerate Serial Devices
	How To Retrieve the Serial Device Properties
	How To Create a Monitor Object
	How To Receive Monitored Events

	Reference
	ISerialMonitor Interface
	Declaration
	Examples
	ISerialMonitor Properties
	Devices

	ISerialMonitor Methods
	CreateMonitor
	InstallLicense
	DisplayActivationDialog
	InstallLicenseInMemory
	InstallLicenseInMemoryNative

	IMonitoring Interface
	Declaration
	IMonitoring Properties
	ConnectedDevice
	Connected
	SerialMonitor

	IMonitoring Methods
	Connect
	Disconnect
	AddNativeListener
	RemoveNativeListener

	IDevice Interface
	Declaration
	IDevice Properties
	Name
	ConnectionString
	Present
	Type
	Port
	Icon
	OpenedBy

	IDeviceCollection Interface
	Declaration
	IDeviceCollection Properties
	this
	Count

	IDeviceCollection Methods
	GetEnumerator

	INativeListener Interface
	Declaration
	INativeListener Methods
	GetCaps
	ProcessRAWBuffer
	OnConnection
	OnOpen
	OnClosed
	OnRead
	OnWrite
	OnTransmit
	OnBaudRate
	OnSerialChars
	OnCommStatus
	OnDTRRTS
	OnHandflow
	OnLineControl
	OnStats
	OnTimeouts
	OnWaitMask
	OnPurge
	OnSetQueueSize
	OnSetBreak
	OnDTR
	OnReset
	OnRTS
	OnXOFF
	OnXON
	OnWaitOnMask
	OnGetModemStatus
	OnGetProperties
	OnClearStats

	_ISerialMonitorEvents Interface
	Declaration
	_ISerialMonitorEvents Methods
	OnChange

	_IMonitoringEvents Interface
	Declaration
	_IMonitoringEvents Methods
	OnConnection
	OnOpen
	OnClose
	OnRead
	OnWrite
	OnTransmit
	OnBaudRate
	OnSerialChars
	OnCommStatus
	OnDTRRTS
	OnHandflow
	OnLineControl
	OnStats
	OnTimeouts
	OnWaitMask
	OnPurge
	OnSetQueueSize
	OnSetBreak
	OnDTR
	OnReset
	OnRTS
	OnXOFF
	OnXON
	OnWaitOnMask
	OnGetModemStatus
	OnGetProperties
	OnClearStats

	DeviceType Enumeration
	BAUDRATES Enumeration
	DATABITS_ST Enumeration
	EVENTS Enumeration
	MODEMSTATUS Enumeration
	PARITY Enumeration
	PROVIDERCAPS Enumeration
	PROVIDERSETTABLE Enumeration
	PROVIDERTYPE Enumeration
	PURGE Enumeration
	STOPBITS Enumeration
	STOPPARITY_ST Enumeration
	ConnectionState Enumeration

