
1
6
6
6
6
7
7
8
8
8
9
9
9
9

10
11
11
11
11
11
11
11
11
12
12
12
12
12
12
12
14
14
14
15
15
16
16
16
18
18
18
18
18
18
19
19
19
19
20
20
20

Table of Contents
Table of Contents
About USBMC

Introduction
Library Description
Library Features

Licensing
Installation
Library Redistribution Policy

General Library Distribution Information
Manual Redistribution
Windows Installer Merge Module
Library Activation on Client Computers

Activating USB Monitoring Control
Manual Activation
Activation from Code

Using USBMC
Usage Environments

Native Environment
Managed Environment

General Guidelines
Common Information
Native Conventions

Dual Interfaces
INativeListener Local Interface
Time Values
INativeListener Methods Parameters

Managed Conventions
Dual Interfaces
Event Interfaces

Processing Sequence
How To

How to Initialize the USBMC Library
Native Environment
Managed Environment

How to Enumerate USB Devices
How to Retrieve USB Device Properties
How to Create a Monitoring Object
How to Receive Monitored Events

Reference
Interfaces

IDevice Interface
Declaration
IDevice Properties

Manufacturer
Location
Key
Icon
Present
Name

IUsbMonitor Interface
Declaration

USB Monitoring Control Documentation Table of Contents

1

21
21
21
21
21
22
22
23
23
23
27
27
27
28
29
29
30
30
31
31
32
33
34
34
35
35
36
36
37
38
39
39
39
40
40
41
41
42
43
44
44
45
46
46
47
47
48
48
49
50
51
51
52
53

IUsbMonitor Properties
Devices

IUsbMonitor Methods
CreateMonitor
InstallLicense
InstallLicenseInMemory
InstallLicenseInMemoryNative
DisplayActivationDialog

INativeListener Interface
Declaration
INativeListener Methods

OnClearFeatureToEndpoint
OnClearFeatureToInterface
OnClearFeatureToOther
OnConnection
OnControlTransfer
OnGetConfiguration
OnGetCurrentFrameNumber
OnGetDescriptorFromDevice
OnGetDescriptorFromEndpoint
OnGetDescriptorFromInterface
OnGetFrameLength
OnGetInterface
OnGetStatusFromDevice
OnGetStatusFromEndpoint
OnGetStatusFromInterface
OnGetStatusFromOther
OnIsochTransfer
OnPacketDown
OnPacketUp
OnQueryID
OnQueryInterface
OnQueryText
OnReleaseFrameLengthControl
OnResetPipe
OnSelectConfiguration
OnSelectInterface
OnSetDescriptorToDevice
OnSetDescriptorToEndpoint
OnSetDescriptorToInterface
OnSetFeatureToDevice
OnSetFeatureToEndpoint
OnSetFeatureToInterface
OnSetFeatureToOther
OnSetFrameLength
OnSurpriseRemoval
OnTakeFrameLengthControl
OnUrb
OnVendorDevice
OnVendorEndpoint
OnVendorInterface
OnVendorOther
ProcessRAWBuffer
OnAbortPipe

USB Monitoring Control Documentation Table of Contents

2

53
54
55
55
56
57
58
58
58
58
59
59
59
59
60
60
60
61
61
61
61
62
62
62
62
63
63
63
63
66
66
67
67
68
68
69
70
70
71
71
72
72
73
74
74
75
76
76
76
77
77
78
79
79

OnBulkOrInterruptTransfer
OnClassDevice
OnClassEndpoint
OnClassInterface
OnClassOther
OnClearFeatureToDevice

IMonitoring Interface
Declaration
IMonitoring Properties

Connected
ConnectedDevice
UsbMonitor

IMonitoring Methods
Connect
Disconnect
AddNativeListener
RemoveNativeListener

IDeviceCollection Interface
Declaration
IDeviceCollection Properties

Item
Count
_NewEnum

_IUsbMonitorEvents Interface
Declaration
_IUsbMonitorEvents Methods

OnChange
_IMonitoringEvents Interface

Declaration
_IMonitoringEvents Methods

OnClassEndpoint
OnClassInterface
OnClassOther
OnClearFeatureToDevice
OnClearFeatureToEndpoint
OnClearFeatureToInterface
OnClearFeatureToOther
OnConnection
OnControlTransfer
OnGetConfiguration
OnGetCurrentFrameNumber
OnGetDescriptorFromDevice
OnGetDescriptorFromEndpoint
OnGetDescriptorFromInterface
OnGetFrameLength
OnGetInterface
OnGetStatusFromDevice
OnGetStatusFromEndpoint
OnGetStatusFromInterface
OnGetStatusFromOther
OnIsochTransfer
OnPacketDown
OnPacketUp
OnQueryID

USB Monitoring Control Documentation Table of Contents

3

79
80
80
81
81
82
82
83
83
84
85
85
86
87
87
87
88
88
89
90
91
91
92
92
93
93
93
93
93

OnQueryInterface
OnQueryText
OnReleaseFrameLengthControl
OnResetPipe
OnSelectConfiguration
OnSelectInterface
OnSetDescriptorToDevice
OnSetDescriptorToEndpoint
OnSetDescriptorToInterface
OnSetFeatureToDevice
OnSetFeatureToEndpoint
OnSetFeatureToInterface
OnSetFeatureToOther
OnSetFrameLength
OnSurpriseRemoval
OnTakeFrameLengthControl
OnUrb
OnVendorDevice
OnVendorEndpoint
OnVendorInterface
OnVendorOther
OnAbortPipe
OnBulkOrInterruptTransfer
OnClassDevice

Enumerations
ConnectionState Enumeration

Functions
ConfigureLibrary Function

ConfigureLibrary

USB Monitoring Control Documentation Table of Contents

4

USB Monitoring Control Documentation Table of Contents

5

About USBMC
This section contains the general information about the library, its installation, licensing and redistribution
policies.

It is structurally divided into the following sections:

Introduction
Contains the general information on the USB Monitoring Control library.

Licensing
Contains the information on licensing the library.

Installation
Contains the information on installing the library on the development system.

Distribution
Contains the library redistribution policy.

Activation
Describes the process of activating the USB Monitoring Control.

Introduction
This section contains the general information about the USB Monitoring Control library (USBMC). It is
structurally divided into the following sections:

Library Description
The introductory library description.

Library features
Contains the complete list of library features.

Library Description

HHD USB Monitoring library provides USB monitoring functionality for your application. It collects and
parses USB packets so that it is very easy to use/parse their content in your application. The library lets you
enumerate all installed USB devices (Mass Storage class devices like flash drives, HID devices like mice or
keyboards etc). You can attach to any of them and collect/analyze data that is being transferred between this
particular device and host (computer). The Monitor object can be attached to the device at any time, no
matter if the device is being currently used or not. For example flash drive could be ejected, but it still
appears during enumeration.

USBMC, The Library, library, control
The USB Monitoring Control library

User or client code
Code in any language that instantiates the USBMC and calls its methods

The monitored application
The application that has the monitored USB device open.

Library Features

The HHD Software USB Monitoring Control library offers the following functionality:

Support for PnP and virtual USB devices with hot-plug and hot-unplug functionality.
Full support for USB 2.0, USB 3.0 and USB 3.1.

USB Monitoring Control Documentation About USBMC

6

introduction.html
licensing.html
installation.html
redistribution.html
activation.html
../reference/interfaces/iusbmonitor.html

Interception of all data read from and written to the USB device.
Support for Windows 7, Windows 8, Windows 8.1 and Windows 10 as well as corresponding server
editions. Both 32-bit and 64-bit versions are supported.
Provides two high-performance mechanisms: one for native code (direct COM interfaces) and one for
managed code * (automation-compatible interface).
High compatibility with all modern development environments, including Microsoft Visual Studio 2012
(or later), Embarcadero RAD Studio XE 4 (or later).
Library client code can be written in any language, including C++, Delphi, C#, VB.NET and any other
CLR-compatible language.
“Layered parsing” technology for native interface allows you to skip several parsing steps in order to
optimize performance.

Licensing
This section contains the list of licenses the USB Monitoring Control is distributed under. Please note that the
licensing is subject to change. For a most recent list of licenses please visit the HHD Software Web site.

You may find the detailed information on USB Monitoring Control licensing on-line. Click on a link below to
read the corresponding license agreement.

License Single
developer

Unlimited number of
developers

Distribution right
included

Single Developer &
Distribution

X X

Site Developer &
Distribution

X X

Installation
The library is distributed as a single executable file which is signed by the HHD Software, Ltd. You can use
the operating system's provided tools to verify the digital signature to make sure the file is delivered
unmodified by any third-party and is free of transmission errors.

The library installer, when launched, asks you to provide the library installation path, or to accept the default.
You can also choose whether you need the library samples to be installed or not.

After installation, the following structure is created in a destination folder:

bin
hhdusbmc.dll - USB Monitoring Control ActiveX component
DIFxAPI.dll - Driver installation framework utility DLL

doc
hhdusbmc.chm - This documentation

drivers
hhdusbmc.inf - Driver installation information file
hhdusbmc_x86.cat - 32-bit driver catalog file
hhdusbmc_x64.cat - 64-bit driver catalog file
hhdusbmc32.sys - 32-bit filter driver
hhdusbmc64.sys - 64-bit filter driver

inc
hhdusbdefs.h - File with internal driver structures definitions
hhdusbmc.idl - File with library classes and interfaces
hhdusbmc.h - “Compiled” version of hhdusbmc.idl file
usb.h - parts of USB-related declarations, taken from Windows DDK. It is recommended to install
Windows DDK and use the file from this kit instead

lib
x64

USB Monitoring Control Documentation About USBMC

7

https://www.hhdsoftware.com
https://www.hhdsoftware.com/dispatch/usbmc/software-licenses/SINGLE_DEVELOPER_DISTRIBUTION
https://www.hhdsoftware.com/dispatch/usbmc/software-licenses/SITE_DEVELOPER_DISTRIBUTION

hhdusbmc.lib - 64-bit import library
x86

hhdusbmc.lib - 32-bit import library
redist

Manual
usbmc_redist.exe - redistributable module

Merge Module
x64

usbmc_msm_x64.msm - 64-bit Windows Installer Merge Module
x86

usbmc_msm_x86.msm - 32-bit Windows Installer Merge Module
Samples

Library sample solutions and projects

NOTE
64-bit device driver cannot be used with 32-bit client code.

Library Redistribution Policy
Library redistribution policy largely depends on the purchased license. Detailed information about library
redistribution can be found in the Licensing topic. General information is also provided below.

General Library Distribution Information

The USBMC library can be distributed in two ways:

Distribution of the original USBMC installation package.

You are allowed to distribute the original library installation package provided the following is true: the
hhdusbmc.exe file is not modified by any means and is accompanied by a link to HHD Software web
site. This can be an Internet URL file, a readme file in the same folder or same archive where the
hhdusbmc.exe file is located on distribution media. If the file is distributed on the Web Site, the link to
HHD Software web site must be on the same page as the link to the hhdusbmc.exe file.

The hhdusbmc.exe file, as all other files available on HHD Software Web Site, is digitally signed. Please
verify that the digital signature is still valid before distributing the file. If, on the other side, you
somehow received the USB Monitoring Control library and found that signature validation algorithm
fails, please be so kind to notify us via our contact page.

Library Redistribution

Two ways of redistributing the library are provided by the current version: manual redistribution and
Windows Installer merge module.

Manual Redistribution

To redistribute the library with your application, use the usbmc_redist.exe file, located in the
redist\Manual folder.

This is a Win32 executable without any external references. It supports all operating systems starting
from Windows 7 (both 32-bit and 64-bit).

Launch this executable on a target computer to install or uninstall the USBMC library and accompanying
filter driver.

It automatically installs 32-bit or 64-bit version of components. Below is executable's command line
parameters:

USB Monitoring Control Documentation About USBMC

8

PowerShell
usbmc_redist.exe [/q] [/u] [/t <path>] [/?]

Option Description
/q Quiet mode. Do not display any user interface. Note that on some

operating systems, driver installation prompt may still be displayed.
/u Uninstall the library. If not specified, performs library installation.
/t <path> Use the given installation path instead of the default one.
/? Display supported command line parameters.

usbmc_redist.exe must be launched by a user with administrative privileges. The caller must also be
elevated. Library installation may be performed by more restricted user if she has write access to
destination folder, has write access to system drivers folder (usually \Windows\System32\Drivers) and
has been assigned an “Install Device Drivers” privilege.

I f /q switch is not specified, a message box with a short description of the result of operation is
displayed.

Upon exit, usbmc_redist.exe returns an error code, which must be interpreted as described below:

Error
code

Meaning

0 (S_OK) Library installation/uninstallation has been successful.
1
(S_FALSE)

Library installation/uninstallation has been successful. Reboot is
required to complete the installation.

any other Any other code must be treated as a standard HRESULT value.

Windows Installer Merge Module

If your application is packaged with Windows Installer, you may use the merge modules provided in the
\redist\Merge Module folder. Use the correct module for your target platform (32-bit or 64-bit).

Library Activation on Client Computers

Library activation on client computers is performed in your installation code by calling one of the
IUsbMonitor.InstallLicense, IUsbMonitor.InstallLicenseInMemory or
IUsbMonitor.InstallLicenseInMemoryNative methods.

NOTE
You are explicitly prohibited from charging any fees for all kinds of library distribution!

Activating USB Monitoring Control
This section provides a complete description of the steps you need to follow in order to activate your copy of
the HHD Software USB Monitoring Control.

First, you need to have an account in our internal database, which means that the product must already be
purchased. If you haven't purchased it yet, please follow to the product's homepage.

Manual Activation

Below is the Activation window.

USB Monitoring Control Documentation About USBMC

9

https://www.hhdsoftware.com/dispatch/usbmc/details.html

You need to provide a full path to the license file in order to activate the USBMC. You can enter the path
manually, or click the Browse button.

Activation from Code

You can also install a license file from code. The following methods are available:

1. IUsbMonitor.InstallLicense, IUsbMonitor.InstallLicenseInMemory and
IUsbMonitor.InstallLicenseInMemoryNative methods install a license file contained in a file or in a
memory buffer.

2. IUsbMonitor.DisplayActivationDialog method displays an activation dialog, allowing a user to specify
the license file to activate the library.

3. The library exports a function with a following signature:

C++
extern "C" void __stdcall DisplayActivationDialogW(HWND hwnd, HINSTANCE hInstance, LPCTSTR, int

The signature of the function is compatible with rundll32.exe utility program. It displays an activation
dialog, allowing a user to specify the license file to activate the library.

USB Monitoring Control Documentation About USBMC

10

Using USBMC
Usage Environments
This documentation defines the usage environment as a programming language or development platform,
for which it is possible to use the USB Monitoring Control library. Theoretically, there are unlimited
languages and platforms that can use the library, because it supports both pure COM and OLE automation
interfaces, which makes it highly portable. For clarity, in this documentation we focus on the following two
environments:

Native Environment

Native environment means the language that is binary compatible with COM, more precisely, the one that
supports COM local interfaces. You can create a native client in C/C++ languages, Borland Delphi and others.
As usual, if you are looking for the highest performance and lowest overhead, while keeping your executable
as small as possible, the native environment is your right choice.

The native client must load the library as an in-proc component and make sure to use the free threaded
marshaller. In fact, the so-called native interfaces in the library require that your runtime does not provide
the marshaller for the interface - they are intended to be called directly. INativeListener is the only pure
native interface in the library. All other interfaces are dual and can be called through any marshaller (or
without one).

Managed Environment

Under managed environment we understand all scripting and similar languages. They include JavaScript, VB
script, Visual Basic, Java and the whole .NET platform. All these languages and tools are capable of working
with OLE automation-compatible interfaces. The USBMC library supports managed clients, providing the
highest possible performance while keeping the library usage as simple as possible.

Please note, that you can also create the client in “native” languages, such as C++ or Delphi, that in fact call
the managed version of the library interfaces. While this is possible and actually may simplify your code and
boost your development time, the performance will be slightly less, compared to the one in pure native
environment.

General Guidelines
This section contains the common conventions defined in the library.

Common Information

The library has the following structure:

Native Conventions

Dual Interfaces

USB Monitoring Control Documentation Using USBMC

11

../reference/interfaces/inativelistener.html

IUsbMonitor, IDeviceCollection, IDevice and IMonitoring interfaces are declared dual. To use their binary-
compatible (local) part in native code, include the hhdusbmc.h file in your project. Remember, that the
library must be loaded into your process address space to use the local interfaces without a marshaller.

INativeListener Local Interface

The INativeListener interface is a local interface, so it can only be used in the native code. Unlike other
interfaces declared in the USBMC, the library does not have any object that implement this interface. Instead,
you must implement this interface in your native listener object. Each Monitor object supports adding one or
more native listeners via the IMonitoring.AddNativeListener method call.

The monitor object is capable of providing two different protocols for each native listener. Your
implementation must support exactly one of these protocols. If you support the first (raw) protocol, you will
be able to achieve the highest possible speed, but will have to parse the monitored data in your own code. If
you choose to support the second (standard) protocol, the library will parse each monitored request for you
and call the appropriate method in the INativeListener interface for each request type.

Time Values

Every standard protocol method in the INativeListener interface accepts the FILETIME * value as a first
parameter. This parameter points to the library-allocated FILETIME structure containing the time of the
monitored event. Time is stored in UTC. Do not modify the contents of the variable, treat it as read only.

INativeListener Methods Parameters

Each standard protocol method in the INativeListener interface provides one or more parameters which
contain or point to the parsed request data. The first parameter is always a pointer to a FILETIME structure,
containing the UTC time of the event, while others (if present) contain the parsed request data. Consult the
documentation for individual methods to get more information.

The general rule states that all data passed to the INativeListener methods should be considered read
only.

Managed Conventions

Dual Interfaces

All managed environments are capable of using dual interfaces. Unlike the native environments, which use
the local, binary compatible part of the dual interface, the managed environment uses the IDispatch
interface to call methods and query/set properties. IUsbMonitor, IDeviceCollection, IDevice and IMonitoring
interfaces are all dual interfaces and can be easily used in managed environments.

Event Interfaces

The USB Monitoring Control library has two event interfaces: _IUsbMonitorEvents and _IMonitoringEvents.
Different managed environments support different styles of connecting event handlers to event sources.
Please consult your language documentation to find out how to handle OLE automation events. Native
clients are also able to attach event handlers to event sources. Please consult the MSDN for more
information, or look at the included sample code for an example.

Processing Sequence
This section describes the library's data processing sequence. Whenever a new data packet is captured by
the USBMC, the following occurs:

1. Library calls the INativeListener.ProcessRAWBuffer method of each registered native listener. The full
data buffer is passed to the listener. A data buffer may contain several URB packets. It is listener's
responsibility to separate and process them. If the listener sets the bStopParsing parameter to TRUE, no

USB Monitoring Control Documentation Using USBMC

12

../reference/interfaces/iusbmonitor.html
../reference/interfaces/idevicecollection.html
../reference/interfaces/idevice.html
../reference/interfaces/imonitoring.html
../reference/interfaces/inativelistener.html
../reference/interfaces/iusbmonitor.html
../reference/interfaces/inativelistener.html
../reference/interfaces/inativelistener.html
../reference/interfaces/inativelistener.html
../reference/interfaces/iusbmonitor.html
../reference/interfaces/idevicecollection.html
../reference/interfaces/idevice.html
../reference/interfaces/imonitoring.html
../reference/interfaces/_iusbmonitorevents.html
../reference/interfaces/_imonitoringevents.html

further processing is performed on this data buffer by the library.

2. If none of native listeners deny the further processing, raw data is parsed. After that, for each URB in the
buffer, USBMC calls INativeListener.OnPacketDown or INativeListener.OnPacketUp
(_IMonitoringEvents.OnPacketDown or _IMonitoringEvents.OnPacketUp). Native listener can set the
bStopParsing parameter to TRUE to stop further processing of each individual URB .

3. USBMC parses the packet and calls the appropriate methods of the INativeListener or
_IMonitoringEvents interfaces, depending on the type of the packet.

The following is a pseudo-code of library's data processing pipeline:

C++
// pData is a pointer to data chunk, received from driver
void ProcessBuffer(void* pData, DWORD dwDataSize)
{
 // for each client
 for(...)
 {
 // this step is for NATIVE clients only
 pClient->ProcessRawBuffer(...);
 }

 for (USBPACKET* packet=(USBPACKET *) pData, *stop=(USBPACKET*) ((BYTE *) pData + dwSize);
 packet < stop && packet->Size;
 (BYTE*&) packet+=packet->Size)
 {
 // for each client
 for(...)
 {
 if(packet->Flags & UPF_DOWN)
 pClient->OnPacketDown(...);
 else
 pClient->OnPacketUp(...);

 switch(packet->EventType)
 {
 case EVENT_URB:
 {
 // parsing urb here
 USBPACKET_URB* pUrb = (USBPACKET_URB *)pPacket;
 BYTE* pUrbData = ...;
 DWORD dwUrbSize = ...;
 pClient->OnUrb(pUrbData,dwUrbSize);

 switch (pUrb->urb.UrbHeader.Function)
 {
 case URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE:
 pClient->OnGetDescriptorFromDevice();
 break;
 // ...
 }

 break;
 }
 case EVENT_DEVICECONNECTED:
 pClient->OnConnection(...);
 break;
 // ...
 }
 }
 }
};

Let's take a [OnGetDescriptorFromInterface] method as an example.

USBMC uses URB_CONTROL_DESCRIPTOR_REQUEST structure to get the data from a URB packet. Native listener

USB Monitoring Control Documentation Using USBMC

13

../reference/interfaces/inativelistener.html
../reference/interfaces/_imonitoringevents.html

has the following signature for OnGetDescriptorFromInterface method:

C++
HRESULT OnGetDescriptorFromInterface (FILETIME *fTime, void* pData, ULONG Size,
 BYTE Index, BYTE DescriptorType, USHORT LanguageId);

pData points to the packet that has a type USBPACKET and can be cast to USBPACKET_URB . So, native client
can manually parse this packet and extract fields it needs. Besides USBMC automatically decodes and
provides several packet fields, such as Index , DescriptorType and LanguageId .

Manual parsing can be implemented in C++ in this way:

C++
USBPACKET_URB* pUrb = (USBPACKET_URB*) pData;
_URB_CONTROL_DESCRIPTOR_REQUEST &r = pUrb->urb.UrbControlDescriptorRequest;
// use r variable here
```CPP

Please note that managed (dispatched) interface has a different method signature, without `pData` 

```CPP
OnGetDescriptorFromInterface([in] DATE time,
 [in] BYTE Index, [in] BYTE DescriptorType, [in] USHORT LanguageId);

Nevertheless, several managed callback methods (such as _IMonitoringEvents.OnPacketDown,
_IMonitoringEvents.OnPacketUp and _IMonitoringEvents.OnUrb) receive raw data by means of a safe array,
allowing them to manually parse data.

How To
This section contains the step-by-step procedures that will show you how to use the USB Monitoring Control
library.

Select one of the following links to find out how to…

Initialize the USBMC library.
Enumerate USB Devices.
Retrieve USB Device Properties.
Create a monitoring object.
Receive monitored events.

How to Initialize the USBMC Library

This section describes the steps you need to carry in order to successfully initialize the USBMC library.

Native Environment

1. Include the hhdusbmc.h file in one of your source files:

C++
#include <hhdusbmc.h>

2. Declare the pointer to the IUsbMonitor interface.

C++
CComPtr<IUsbMonitor> pUsbMonitor;

3. Create the instance of the UsbMonitor object.

USB Monitoring Control Documentation Using USBMC

14

initialize.html
enumerate.html
retrieve.html
create.html
receive.html
../../reference/interfaces/iusbmonitor.html

C++
pUsbMonitor.CoCreateInstance(__uuidof(UsbMonitor));

Remember that you cannot create more than one UsbMonitor object in single process. Although, you
can have as many Monitor objects as you need.

4. Link to hhdusbmc.lib library to eliminate unresolved externals for library GUIDs.

Managed Environment

Use your language-provided tools to add the reference to the USB Monitoring Control library into your
project.

How to Enumerate USB Devices

This section describes the steps you need to carry in order to enumerate the USB devices installed on the
computer.

1. Initialize the usbMonitor object, as described in the this tutorial.

2. Obtain the pointer to the IDeviceCollection interface of the USB device collection object by taking the
value of the IUsbMonitor.Devices property:

C++
CComPtr<IDeviceCollection> pDeviceCollection;
pUsbMonitor->get_Devices(&pDeviceCollection);

C#
DeviceCollection devices = sm.Devices;

3. Get the value of the IDeviceCollection.Count property:

C++
ULONG Count;
pDeviceCollection->get_Count(&Count);

C#
uint Count = devices.Count;

4. Cycle through all items of the collection:

C++
for (int i = 0; i < Count; ++i)
{
 CComPtr<IDevice> pDevice;
 pDeviceCollection->get_Item(CComVariant(i), &pDevice);
 // ...
}

C#
for (int i = 0; i < Count; ++i)
{
 Device device = devices[i];
 // ...
}

or

USB Monitoring Control Documentation Using USBMC

15

../../reference/interfaces/idevicecollection.html

C#
foreach (var device in devices)
{
 // ...
}

How to Retrieve USB Device Properties

This section describes the steps you need to carry in order to retrieve the properties of the USB device.

1. Obtain the IDevice pointer for the device in question.

2. Take the values of the IDevice.Name, IDevice.Icon, IDevice.Location, IDevice.Manufacturer and
IDevice.Key properties.

C++
CComBSTR Location, Name, Manufacturer, DeviceKey;

pDevice->get_Location(&Location);
pDevice->get_Name(&Name);
pDevice->get_Manufacturer(&Manufacturer);
pDevice->get_Key(&DeviceKey);

CComVariant bPresent;
pDevice->get_Present(&bPresent.boolVal);

C#
hhdusbmcLib.Device device = monitor.ConnectedDevice;
string strName = device.Name;
bool bPresent = device.Present;
string strLocation = device.Location;
string strMan = device.Manufacturer;
string strKey = device.Key;
Icon ico = Icon.FromHandle(device.Icon);

How to Create a Monitoring Object

This section describes the steps you need to carry in order to create a monitor object.

1. Initialize the UsbMonitor object, as described in the this tutorial.

2. Call the IUsbMonitor.CreateMonitor method to create a monitor object and receive the IMonitoring
interface.

C++
CComPtr<IMonitoring> pMonitor;
pUsbMonitor->CreateMonitor(&pMonitor);

C#
hhdusbmcLib.Monitoring monitor = mc.CreateMonitor();

You can create as many monitor objects as you need. Each Monitor object can be attached to one USB device
at a time and can have as many native listeners or event handlers attached, as you need.

How to Receive Monitored Events

This section describes the steps you need to carry in order to receive monitored events in your code.

1. Obtain the Monitor object, as described in this tutorial.

2. Add your listener object (for native code) to the Monitor object or connect event handlers (for managed

USB Monitoring Control Documentation Using USBMC

16

../../reference/interfaces/idevice.html
../../reference/interfaces/imonitoring.html

code):

C++
class CMyListener : public CComObjectRoot<CMyListener>, public INativeListener
{
public:
 // override all pure virtual methods in the INativeListener
 STDMETHOD(OnConnection)(FILETIME *,BOOL,LPCTSTR);
 STDMETHOD(OnGetDescriptorFromDevice)(FILETIME *fTime,void* Data,ULONG Size,BYTE Index,BYTE DescriptorType,USHORT LanguageId);
 // ...
};

...

CComObject<CMyListener> pMyListenerObject;
CComObject<CMyListener>::CreateInstance(&pMyListenerObject);
CComPtr<INativeListener> pMyListener;
pMyListenerObject->QueryInterface(&pMyListener);
pMonitor->AddNativeListener(pMyListener);

C#
monitor.OnConnection += new hhdusbmcLib._IMonitoringEvents_OnConnectionEventHandler(monitor_OnConnection);
monitor.OnPacketUp += new hhdusbmcLib._IMonitoringEvents_OnPacketUpEventHandler(monitor_OnPacketUp);
monitor.OnPacketDown += new hhdusbmcLib._IMonitoringEvents_OnPacketDownEventHandler(monitor_OnPacketDown);
...

3. Attach the Monitor object to the USB device:

Attach to the given USB device:

C++
pMonitor->Connect(CComVariant(pDevice), /*headers-only*/ CComVariant(VARIANT_FALSE));

C#
hhdusbmcLib.Device device = monitor.Devices[nIndex];
monitor.Connect(device, /*headers-only*/ false);

Attach to the next USB device the user plugs into the computer:

C++
CComPtr<IDeviceCollection> pDeviceCollection;
HRESULT hr = m_pUM->get_Devices(&pDeviceCollection);
if(FAILED(hr))
 return hr;

CComPtr<IDevice> pDevice;
// first item is always NextConnected
pDeviceCollection->get_Item(CComVariant(0),&pDevice);

pMonitor->Connect(pDevice, /*headers-only*/ CComVariant(VARIANT_FALSE));

C#
// first device is always NextConnected device
hhdusbmcLib.Device device = monitor.Devices[0];
monitor.Connect(device, /*headers-only*/ false);

USB Monitoring Control Documentation Using USBMC

17

Reference
Interfaces
IDevice Interface

Description

This interface is implemented by the USB Monitoring library for each registered USB device. Use this
interface to query the USB device properties.

Declaration

TypeScript
interface IDevice extends IDispatch {
 // Properties
 readonly Manufacturer: string;
 readonly Location: string;
 readonly Key: string;
 readonly Present: boolean;
 readonly Name: string;
}

C#
public interface IDevice : IDispatch
{
 // Properties
 string Manufacturer { get; }
 string Location { get; }
 string Key { get; }
 IntPtr Icon { get; }
 bool Present { get; }
 string Name { get; }
}

C++
struct IDevice : IDispatch
{
 // Properties
 _bstr_t Manufacturer; // get
 _bstr_t Location; // get
 _bstr_t Key; // get
 HICON Icon; // get
 VARIANT_BOOL Present; // get
 _bstr_t Name; // get
};

IDevice Properties

Manufacturer

TypeScript
readonly Manufacturer: string;

C#
string Manufacturer { get; }

C++
_bstr_t Manufacturer; // get

USB Monitoring Control Documentation Reference

18

Description

Device manufacturer string.

Location

TypeScript
readonly Location: string;

C#
string Location { get; }

C++
_bstr_t Location; // get

Description

Device location string.

Key

TypeScript
readonly Key: string;

C#
string Key { get; }

C++
_bstr_t Key; // get

Description

Device key. For example,
\??\usb#vid_0458&pid_003a#5&35eda8e7&0&2#{889bf6d2-b5a9-42af-9364-dcc1b727885b}

Icon

TypeScript
// This property is not available in scripting environment

C#
IntPtr Icon { get; }

C++
HICON Icon; // get

Description

Handle for device icon.

Present

TypeScript
readonly Present: boolean;

USB Monitoring Control Documentation Reference

19

C#
bool Present { get; }

C++
VARIANT_BOOL Present; // get

Description

This property equals true if device is ready and running and false otherwise. Note that USBMC
enumerates all devices - both connected and disconnected. For example - if you will remove Flash Drive - it
will still be enumerated, but Present property will be set to false .

Name

TypeScript
readonly Name: string;

C#
string Name { get; }

C++
_bstr_t Name; // get

Description

Device friendly name. For example, USB Human Interface Device .

IUsbMonitor Interface

Description

This is the first interface you get from the USBMC library. It is used to get the list of installed USB devices and
create Monitor objects. You get a reference to this interface when you create the UsbMonitor object. It is a
central entry point to the monitoring library.

C++
CComPtr<IUsbMonitor> pUM;
HRESULT hr = pUM.CoCreateInstance(__uuidof(UsbMonitor));
if (FAILED(hr))
{
 MessageBox(L"Error opening the USBMC control", L"Error", MB_ICONSTOP | MB_OK);
 return TRUE;
}
// use pUM here

C#
hhdusbmcLib.UsbMonitor mc = new hhdusbmcLib.UsbMonitor();
// use mc here

Declaration

TypeScript
interface IUsbMonitor extends IDispatch {
 // Properties
 readonly Devices: IDeviceCollection;
 // Methods
 CreateMonitor(): IMonitoring;
 InstallLicense(LicenseFile: string): void;
}

USB Monitoring Control Documentation Reference

20

C#
public interface IUsbMonitor : IDispatch
{
 // Properties
 IDeviceCollection Devices { get; }
 // Methods
 IMonitoring CreateMonitor();
 void InstallLicense(string LicenseFile);
 void InstallLicenseInMemory(byte[] data);
 void DisplayActivationDialog(IntPtr hWnd);
}

C++
struct IUsbMonitor : IDispatch
{
 // Properties
 IDeviceCollectionPtr Devices; // get
 // Methods
 IMonitoringPtr CreateMonitor();
 HRESULT InstallLicense(_bstr_t LicenseFile);
 HRESULT InstallLicenseInMemoryNative(UCHAR * pData, ULONG size);
 HRESULT DisplayActivationDialog(HWND hWnd);
};

IUsbMonitor Properties

Devices

TypeScript
readonly Devices: IDeviceCollection;

C#
IDeviceCollection Devices { get; }

C++
IDeviceCollectionPtr Devices; // get

Description

Reference to the device collection object.

IUsbMonitor Methods

CreateMonitor

TypeScript
CreateMonitor(): IMonitoring;

C#
IMonitoring CreateMonitor();

C++
IMonitoringPtr CreateMonitor();

Description

Creates a new monitor object that is ready to be attached to USB device.

InstallLicense

USB Monitoring Control Documentation Reference

21

TypeScript
InstallLicense(LicenseFile: string): void;

C#
void InstallLicense(string LicenseFile);

C++
HRESULT InstallLicense(_bstr_t LicenseFile);

Parameters

LicenseFile

The full path to the license file.

Description

Install a license stored in a given file.

InstallLicenseInMemory

TypeScript
// This method is not available in scripting environment

C#
void InstallLicenseInMemory(byte[] data);

C++
// This method is not available in native environment

Parameters

data

Byte array that stores the contents of the license file.

Description

Install a license stored in a memory buffer.

InstallLicenseInMemoryNative

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT InstallLicenseInMemoryNative(UCHAR * pData, ULONG size);

Parameters

pData

Pointer to a memory buffer that holds the contents of the license file.
size

Size of the buffer pointed by pData , in bytes.

USB Monitoring Control Documentation Reference

22

Description

Install a license stored in a memory buffer.

DisplayActivationDialog

TypeScript
// This method is not available in scripting environment

C#
void DisplayActivationDialog(IntPtr hWnd);

C++
HRESULT DisplayActivationDialog(HWND hWnd);

Parameters

hWnd

Dialog's parent window handle. May be 0 .

Description

Display the activation dialog.

INativeListener Interface

Description

The high-performance event interface for native (C/C++) listeners.

This is a local interface, which means that it can only be used by the in-proc binary compatible clients,
written, for example, in unmanaged C++ language.

Register your native listener with a call to IMonitoring.AddNativeListener method call. Using native listener
interface, you will be able to match the performance of the HHD Software USB Monitor application.

You must implement this interface in your native code to be able to receive monitored events. The USB
Monitoring Control library uses the methods of this interface to notify your code about monitored events.

Declaration

TypeScript
// This interface is not available in scripting environment

C#
// This interface is not available in managed environment

C++
struct INativeListener : IUnknown
{
 // Methods
 HRESULT OnClearFeatureToEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector,
 unsigned short nIndex);
 HRESULT OnClearFeatureToInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector,
 unsigned short nIndex);

USB Monitoring Control Documentation Reference

23

 unsigned short nIndex);
 HRESULT OnClearFeatureToOther(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector);
 HRESULT OnConnection(FILETIME * fTime,
 long bConnected,
 wchar_t * DeviceName);
 HRESULT OnControlTransfer(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 void * SetupPacket,
 unsigned long SetupPacketSize);
 HRESULT OnGetConfiguration(FILETIME * fTime,
 void * Data,
 unsigned long Size);
 HRESULT OnGetCurrentFrameNumber(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned long FrameNumber);
 HRESULT OnGetDescriptorFromDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned short LanguageId);
 HRESULT OnGetDescriptorFromEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned short LanguageId);
 HRESULT OnGetDescriptorFromInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned short LanguageId);
 HRESULT OnGetFrameLength(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned long FrameLength,
 unsigned long FrameNumber);
 HRESULT OnGetInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Interface);
 HRESULT OnGetStatusFromDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size);
 HRESULT OnGetStatusFromEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Index);
 HRESULT OnGetStatusFromInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Index);
 HRESULT OnGetStatusFromOther(FILETIME * fTime,
 void * pData,
 unsigned long Size);
 HRESULT OnIsochTransfer(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned long nTransferFlags,
 unsigned long StartFrame,
 unsigned long NumberOfPackets,
 unsigned long ErrorCount);
 HRESULT OnPacketDown(FILETIME * fTime,
 void * pData,
 unsigned long Size,

USB Monitoring Control Documentation Reference

24

 unsigned long Size,
 long * bStopParsing);
 HRESULT OnPacketUp(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 long * bStopParsing);
 HRESULT OnQueryID(FILETIME * fTime);
 HRESULT OnQueryInterface(FILETIME * fTime);
 HRESULT OnQueryText(FILETIME * fTime);
 HRESULT OnReleaseFrameLengthControl(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Interface);
 HRESULT OnResetPipe(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned __int64 PipeHandle);
 HRESULT OnSelectConfiguration(FILETIME * fTime,
 void * pData,
 unsigned long Size);
 HRESULT OnSelectInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned long InterfaceNumber,
 unsigned long AlternateSetting);
 HRESULT OnSetDescriptorToDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned long LanguageId);
 HRESULT OnSetDescriptorToEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned long LanguageId);
 HRESULT OnSetDescriptorToInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned long LanguageId);
 HRESULT OnSetFeatureToDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector);
 HRESULT OnSetFeatureToEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector,
 unsigned short Index);
 HRESULT OnSetFeatureToInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector,
 unsigned short Index);
 HRESULT OnSetFeatureToOther(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector);
 HRESULT OnSetFrameLength(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 long FrameLengthDelta);
 HRESULT OnSurpriseRemoval(FILETIME * fTime);
 HRESULT OnTakeFrameLengthControl(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Interface);
 HRESULT OnUrb(FILETIME * fTime,

USB Monitoring Control Documentation Reference

25

 HRESULT OnUrb(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 long * bStopParsing);
 HRESULT OnVendorDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value);
 HRESULT OnVendorEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value,
 unsigned short Index);
 HRESULT OnVendorInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value,
 unsigned short Index);
 HRESULT OnVendorOther(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value);
 HRESULT ProcessRAWBuffer(void * pData, unsinged long Size, long * bStopParsing);
 HRESULT OnAbortPipe(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned __int64 PipeHandle);
 HRESULT OnBulkOrInterruptTransfer(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 void * Payload,
 unsigned long PayloadSize);
 HRESULT OnClassDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value);
 HRESULT OnClassEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value,
 unsigned short Index);
 HRESULT OnClassInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value,
 unsigned short Index);
 HRESULT OnClassOther(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value);
 HRESULT OnClearFeatureToDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector);
};

USB Monitoring Control Documentation Reference

26

};

INativeListener Methods

OnClearFeatureToEndpoint

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClearFeatureToEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector,
 unsigned short nIndex);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

nIndex

Specifies the device-defined index, returned by a successful configuration request. The bus driver will
copy the value in the Index member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLEAR_FEATURE_TO_ENDPOINT is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClearFeatureToInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClearFeatureToInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector,
 unsigned short nIndex);

USB Monitoring Control Documentation Reference

27

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

nIndex

Specifies the device-defined index, returned by a successful configuration request. The bus driver will
copy the value in the Index member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLEAR_FEATURE_TO_INTERFACE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClearFeatureToOther

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClearFeatureToOther(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLEAR_FEATURE_TO_OTHER is

USB Monitoring Control Documentation Reference

28

received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnConnection

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnConnection(FILETIME * fTime,
 long bConnected,
 wchar_t * DeviceName);

Parameters

fTime

The time of the event.
bConnected

The value of this parameter is TRUE if device is connected and FALSE if device is disconnected.
DeviceName

Name of the device. You can also get it by retrieving IDevice.Name at any time.

Description

Called when the control attaches/detaches itself to/from the USB device.

OnControlTransfer

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnControlTransfer(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 void * SetupPacket,
 unsigned long SetupPacketSize);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
SetupPacket

USB Monitoring Control Documentation Reference

29

Pointer to the setup packet.
SetupPacketSize

Size of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CONTROL_TRANSFER is received.
See _URB_CONTROL_DESCRIPTOR_REQUEST in MSDN for more details. The library decodes several parameters
from this packet.

OnGetConfiguration

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetConfiguration(FILETIME * fTime,
 void * Data,
 unsigned long Size);

Parameters

fTime

The time of the event.
Data

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.

Description

See _URB_BULK_OR_INTERRUPT_TRANSFER in MSDN for more details.

OnGetCurrentFrameNumber

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetCurrentFrameNumber(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned long FrameNumber);

Parameters

fTime

The time of the event.
pData

USB Monitoring Control Documentation Reference

30

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FrameNumber

Contains the current 32-bit frame number, on the USB bus, on return from the host controller driver.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_CURRENT_FRAME_NUMBER is
received. See _URB_GET_CURRENT_FRAME_NUMBER in MSDN for more details. The library decodes several
parameters from this packet.

OnGetDescriptorFromDevice

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetDescriptorFromDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned short LanguageId);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE / USB_CONFIGURATION_DESCRIPTOR_TYPE / USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set in
DescriptorType . This member must be set to zero for any other value in DescriptorType .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE is
received. See _URB_CONTROL_DESCRIPTOR_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetDescriptorFromEndpoint

USB Monitoring Control Documentation Reference

31

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetDescriptorFromEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned short LanguageId);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE / USB_CONFIGURATION_DESCRIPTOR_TYPE / USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set in
DescriptorType . This member must be set to zero for any other value in DescriptorType .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_DESCRIPTOR_FROM_ENDPOINT
is received. See _URB_CONTROL_DESCRIPTOR_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetDescriptorFromInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetDescriptorFromInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned short LanguageId);

Parameters

USB Monitoring Control Documentation Reference

32

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE / USB_CONFIGURATION_DESCRIPTOR_TYPE / USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set in
DescriptorType . This member must be set to zero for any other value in DescriptorType .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_DESCRIPTOR_FROM_INTERFACE
is received. See _URB_CONTROL_DESCRIPTOR_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetFrameLength

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetFrameLength(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned long FrameLength,
 unsigned long FrameNumber);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FrameLength

Contains the length of each bus frame in USB-defined bit times.
FrameNumber

Contains the earliest bus frame number that the frame length can be altered on return from the host
controller driver.

USB Monitoring Control Documentation Reference

33

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_FRAME_LENGTH is received.
See _URB_GET_FRAME_LENGTH in MSDN for more details. The library decodes several parameters from this
packet.

OnGetInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Interface);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Interface

Specifies the device-defined index of the interface descriptor being retrieved.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_INTERFACE is received. See
_URB_CONTROL_GET_INTERFACE_REQUEST in MSDN for more details. The library decodes several parameters
from this packet.

OnGetStatusFromDevice

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetStatusFromDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size);

Parameters

fTime

The time of the event.

USB Monitoring Control Documentation Reference

34

pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_STATUS_FROM_DEVICE is
received. See _URB_CONTROL_GET_STATUS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetStatusFromEndpoint

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetStatusFromEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Index);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_STATUS_FROM_ENDPOINT is
received. See _URB_CONTROL_GET_STATUS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetStatusFromInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

USB Monitoring Control Documentation Reference

35

C++
HRESULT OnGetStatusFromInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Index);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_STATUS_FROM_INTERFACE is
received. See _URB_CONTROL_GET_STATUS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetStatusFromOther

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnGetStatusFromOther(FILETIME * fTime,
 void * pData,
 unsigned long Size);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_STATUS_FROM_OTHER is
received. See _URB_CONTROL_GET_STATUS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnIsochTransfer

USB Monitoring Control Documentation Reference

36

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnIsochTransfer(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned long nTransferFlags,
 unsigned long StartFrame,
 unsigned long NumberOfPackets,
 unsigned long ErrorCount);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
nTransferFlags

Specifies zero, one, or a combination of the following flags: USBD_TRANSFER_DIRECTION_IN ,
USBD_SHORT_TRANSFER_OK , USBD_START_ISO_TRANSFER_ASAP .

StartFrame

Specifies the frame number the transfer should begin on. This variable must be within a system-defined
range of the current frame. The range is specified by the constant USBD_ISO_START_FRAME_RANGE . If
START_ISO_TRANSFER_ASAP is set in TransferFlags, this member contains the frame number that the
transfer began on, when the request is returned by the host controller driver. Otherwise, this member
must contain the frame number that this transfer will begin on.

NumberOfPackets

Specifies the number of packets described by the variable-length array member IsoPacket .
ErrorCount

Contains the number of packets that completed with an error condition on return from the host
controller driver.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_ISOCH_TRANSFER is received. See
_URB_ISOCH_TRANSFER and USBD_ISO_PACKET_DESCRIPTOR for more details. The library decodes several
parameters from this packet.

OnPacketDown

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

USB Monitoring Control Documentation Reference

37

C++
HRESULT OnPacketDown(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 long * bStopParsing);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
bStopParsing

Set this parameter to TRUE if you don't need USBMC to parse this packet any more. That means that
USBMC will not call methods like OnUrb / OnGetDescriptorFromDevice /
OnGetDescriptorFromEndpoint for this packet. That could be used for optimization if you manually
parse URB packet.

Description

Called when packet is going down.

OnPacketUp

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnPacketUp(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 long * bStopParsing);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
bStopParsing

Set this parameter to TRUE if you don't need USBMC to parse this packet any more. That means that
USBMC will not call methods like OnUrb / OnGetDescriptorFromDevice /
OnGetDescriptorFromEndpoint for this packet. That could be used for optimization if you manually
parse URB packet.

Description

USB Monitoring Control Documentation Reference

38

Called when packet is going up.

OnQueryID

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnQueryID(FILETIME * fTime);

Parameters

fTime

The time of the event.

Description

Called when id is queried with EVENT_DEVICEQUERYID .

OnQueryInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnQueryInterface(FILETIME * fTime);

Parameters

fTime

The time of the event.

Description

Called when id is queried with EVENT_DEVICEQUERYINTERFACE .

OnQueryText

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnQueryText(FILETIME * fTime);

Parameters

fTime

USB Monitoring Control Documentation Reference

39

The time of the event.

Description

Called when id is queried with EVENT_DEVICEQUERYTEXT .

OnReleaseFrameLengthControl

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnReleaseFrameLengthControl(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Interface);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Interface

Specifies the device-defined index of the interface descriptor being retrieved.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_RELEASE_FRAME_LENGTH_CONTROL
is received. See _URB_CONTROL_GET_INTERFACE_REQUEST in MSDN for more details. The library decodes
several parameters from this packet.

OnResetPipe

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnResetPipe(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned __int64 PipeHandle);

Parameters

fTime

The time of the event.

USB Monitoring Control Documentation Reference

40

pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
PipeHandle

Specifies an opaque handle to the bulk or interrupt pipe. The host controller driver returns this handle
when the client driver selects the device configuration with a URB of type
URB_FUNCTION_SELECT_CONFIGURATION or when the client driver changes the settings for an interface
with a URB of type URB_FUNCTION_SELECT_INTERFACE .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_RESET_PIPE is received. See
_URB_PIPE_REQUEST in MSDN for more details.

OnSelectConfiguration

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSelectConfiguration(FILETIME * fTime,
 void * pData,
 unsigned long Size);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SELECT_CONFIGURATION is
received. See _URB_SELECT_CONFIGURATION for more details.

OnSelectInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

USB Monitoring Control Documentation Reference

41

C++
HRESULT OnSelectInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned long InterfaceNumber,
 unsigned long AlternateSetting);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
InterfaceNumber

Specifies the device-defined index identifier for this interface.
AlternateSetting

Specifies a device-defined index identifier that indicates which alternate setting this interface is using,
should use, or describes.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SELECT_INTERFACE is received.
See _URB_SELECT_INTERFACE in MSDN for more details. The library decodes several parameters from this
packet.

OnSetDescriptorToDevice

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetDescriptorToDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned long LanguageId);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Index

USB Monitoring Control Documentation Reference

42

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE , USB_CONFIGURATION_DESCRIPTOR_TYPE , USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set in
DescriptorType. This member must be set to zero for any other value in DescriptorType .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_DESCRIPTOR_TO_DEVICE is
received. See _URB_CONTROL_DESCRIPTOR_REQUEST for more details. The library decodes several parameters
from this packet.

OnSetDescriptorToEndpoint

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetDescriptorToEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned long LanguageId);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE , USB_CONFIGURATION_DESCRIPTOR_TYPE , USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set in
DescriptorType. This member must be set to zero for any other value in DescriptorType .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_DESCRIPTOR_TO_ENDPOINT is
received. See _URB_CONTROL_DESCRIPTOR_REQUEST for more details. The library decodes several parameters
from this packet.

USB Monitoring Control Documentation Reference

43

OnSetDescriptorToInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetDescriptorToInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char Index,
 unsigned char DescriptorType,
 unsigned long LanguageId);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE , USB_CONFIGURATION_DESCRIPTOR_TYPE , USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set in
DescriptorType. This member must be set to zero for any other value in DescriptorType .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_DESCRIPTOR_TO_INTERFACE is
received. See _URB_CONTROL_DESCRIPTOR_REQUEST for more details. The library decodes several parameters
from this packet.

OnSetFeatureToDevice

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetFeatureToDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector);

Parameters

USB Monitoring Control Documentation Reference

44

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FEATURE_TO_DEVICE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetFeatureToEndpoint

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetFeatureToEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector,
 unsigned short Index);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Index

Specifies the device-defined index, returned by a successful configuration request. The bus driver will
copy the value in the Index member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FEATURE_TO_ENDPOINT is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several

USB Monitoring Control Documentation Reference

45

parameters from this packet.

OnSetFeatureToInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetFeatureToInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector,
 unsigned short Index);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Index

Specifies the device-defined index, returned by a successful configuration request. The bus driver will
copy the value in the Index member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FEATURE_TO_INTERFACE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetFeatureToOther

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetFeatureToOther(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector);

Parameters

USB Monitoring Control Documentation Reference

46

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FEATURE_TO_OTHER is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetFrameLength

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnSetFrameLength(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 long FrameLengthDelta);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
FrameLengthDelta

Specifies the number of USB-defined bit times to be added or subtracted from the current frame length.
The maximum increase or decrease per URB is 1.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FRAME_LENGTH is received.
See _URB_SET_FRAME_LENGTH for more details. The library decodes several parameters from this packet.

OnSurpriseRemoval

TypeScript
// This method is not available in scripting environment

USB Monitoring Control Documentation Reference

47

C#
// This method is not available in managed environment

C++
HRESULT OnSurpriseRemoval(FILETIME * fTime);

Parameters

fTime

Description

Called when device is removed with EVENT_DEVICESURPRISEREMOVAL .

OnTakeFrameLengthControl

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnTakeFrameLengthControl(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short Interface);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Interface

Specifies the device-defined index of the interface descriptor being retrieved.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL is
received. See _URB_CONTROL_GET_INTERFACE_REQUEST for more details. The library decodes several
parameters from this packet.

OnUrb

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

USB Monitoring Control Documentation Reference

48

C++
HRESULT OnUrb(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 long * bStopParsing);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
bStopParsing

Set this to TRUE if you don't need USBMC to parse this packet any more. That means that USBMC will
not call methods like OnGetDescriptorFromDevice / OnGetDescriptorFromEndpoint for this packet.
That could be used for optimization if you manually parse URB packet.

Description

Called when URB is transmitted. See USBPACKET_URB for more information.

OnVendorDevice

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnVendorDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-

USB Monitoring Control Documentation Reference

49

defined target.
Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_VENDOR_DEVICE is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more information. The library decodes several
parameters from this packet.

OnVendorEndpoint

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnVendorEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value,
 unsigned short Index);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_VENDOR_ENDPOINT is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more information. The library decodes several
parameters from this packet.

USB Monitoring Control Documentation Reference

50

OnVendorInterface

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnVendorInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value,
 unsigned short Index);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_VENDOR_INTERFACE is received.
See _URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more information. The library decodes several
parameters from this packet.

OnVendorOther

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

USB Monitoring Control Documentation Reference

51

C++
HRESULT OnVendorOther(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_VENDOR_OTHER is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more information. The library decodes several
parameters from this packet.

ProcessRAWBuffer

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT ProcessRAWBuffer(void * pData, unsinged long Size, long * bStopParsing);

Parameters

pData

Pointer to a raw buffer that may contain multiple packets. Use it to manually parse all packets. See
MFCSample for more details.

Size

Total size of the raw buffer.
bStopParsing

Set this to TRUE if you don't need USBMC to parse this buffer any more. That means that USBMC will

USB Monitoring Control Documentation Reference

52

not call methods like OnPacketUp , OnPacketDown , OnUrb , OnGetDescriptorFromDevice ,
OnGetDescriptorFromEndpoint for all packets that are contained in buffer. That could be used for
optimization if you manually parse this buffer.

Description

Called by the control to process the monitored events at the lowest possible level.

OnAbortPipe

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnAbortPipe(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned __int64 PipeHandle);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
PipeHandle

Specifies an opaque handle to the bulk or interrupt pipe. The host controller driver returns this handle
when the client driver selects the device configuration with a URB of type
URB_FUNCTION_SELECT_CONFIGURATION or when the client driver changes the settings for an interface
with a URB of type URB_FUNCTION_SELECT_INTERFACE .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_ABORT_PIPE is received. See
_URB_PIPE_REQUEST in MSDN for more details.

OnBulkOrInterruptTransfer

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnBulkOrInterruptTransfer(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 void * Payload,
 unsigned long PayloadSize);

USB Monitoring Control Documentation Reference

53

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
Payload

Pointer to payload that trails after all headers. Use it to manually parse all fields. See MFCSample for
more details. Note that in headers-only mode this pointer is invalid.

PayloadSize

The size of the payload. This parameter is zero when in headers-only mode.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER is
received. See _URB_BULK_OR_INTERRUPT_TRANSFER for more details.

OnClassDevice

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClassDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

USB Monitoring Control Documentation Reference

54

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLASS_DEVICE is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClassEndpoint

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClassEndpoint(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value,
 unsigned short Index);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLASS_ENDPOINT is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClassInterface

USB Monitoring Control Documentation Reference

55

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClassInterface(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value,
 unsigned short Index);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLASS_INTERFACE is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClassOther

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

USB Monitoring Control Documentation Reference

56

C++
HRESULT OnClassOther(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned char RequestTypeReservedBits,
 unsigned char Request,
 unsigned short Value);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

Total size of USBPACKET and all payload data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLASS_OTHER is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClearFeatureToDevice

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT OnClearFeatureToDevice(FILETIME * fTime,
 void * pData,
 unsigned long Size,
 unsigned short FeatureSelector);

Parameters

fTime

The time of the event.
pData

Pointer to a USBPACKET . Use it to manually parse all fields. See MFCSample for more details.
Size

USB Monitoring Control Documentation Reference

57

Total size of USBPACKET and all payload data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLEAR_FEATURE_TO_DEVICE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

IMonitoring Interface

Description

This interface is implemented by the Monitor object in the USB Monitoring Control library. You get this
interface by calling the IUsbMonitor.CreateMonitor method and use it to start monitoring the USB device.

Declaration

TypeScript
interface IMonitoring {
 // Properties
 readonly Connected: boolean;
 readonly ConnectedDevice: IDevice;
 readonly UsbMonitor: IUsbMonitor;
 // Methods
 Connect(Device?: IDevice, HeadersOnly?: boolean): void;
 Disconnect(): void;
}

C#
public interface IMonitoring
{
 // Properties
 bool Connected { get; }
 IDevice ConnectedDevice { get; }
 IUsbMonitor UsbMonitor { get; }
 // Methods
 void Connect(IDevice Device, bool HeadersOnly);
 void Disconnect();
}

C++
struct IMonitoring : IDispatch
{
 // Properties
 VARIANT_BOOL Connected; // get
 IDevicePtr ConnectedDevice; // get
 IUsbMonitorPtr UsbMonitor; // get
 // Methods
 HRESULT Connect(_variant_t Device, _variant_t HeadersOnly);
 HRESULT Disconnect();
 HRESULT AddNativeListener(INativeListener * Listener);
 HRESULT RemoveNativeListener(INativeListener * Listener);
};

IMonitoring Properties

Connected

USB Monitoring Control Documentation Reference

58

TypeScript
readonly Connected: boolean;

C#
bool Connected { get; }

C++
VARIANT_BOOL Connected; // get

Description

Returns true if it is currently connected to the USB device.

ConnectedDevice

TypeScript
readonly ConnectedDevice: IDevice;

C#
IDevice ConnectedDevice { get; }

C++
IDevicePtr ConnectedDevice; // get

Description

Returns the device this monitor object is currently connected to, or null if it is not connected.

UsbMonitor

TypeScript
readonly UsbMonitor: IUsbMonitor;

C#
IUsbMonitor UsbMonitor { get; }

C++
IUsbMonitorPtr UsbMonitor; // get

Description

Returns the reference to the main UsbMonitor object.

IMonitoring Methods

Connect

TypeScript
Connect(Device?: IDevice, HeadersOnly?: boolean): void;

C#
void Connect(IDevice Device, bool HeadersOnly);

C++
HRESULT Connect(_variant_t Device, _variant_t HeadersOnly);

USB Monitoring Control Documentation Reference

59

Parameters

Device

Optional reference to the device to monitor. If missing, a session connects to the next connected USB
device.

HeadersOnly

true to only process packet headers, false to process full packets. Default is false if parameter is
omitted.

Description

Connect to the USB device.

Disconnect

TypeScript
Disconnect(): void;

C#
void Disconnect();

C++
HRESULT Disconnect();

Description

Disconnect from the USB device.

AddNativeListener

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

C++
HRESULT AddNativeListener(INativeListener * Listener);

Parameters

Listener

Pointer to native listener client provides. Can be used only by a native code. Please see MFCSample for
more details.

Description

Add new native listener.

RemoveNativeListener

TypeScript
// This method is not available in scripting environment

C#
// This method is not available in managed environment

USB Monitoring Control Documentation Reference

60

C++
HRESULT RemoveNativeListener(INativeListener * Listener);

Parameters

Listener

Pointer to native listener client provides. Can be used only by a native code. Please see MFCSample for
more details.

Description

Remove native listener.

IDeviceCollection Interface

Description

You obtain this interface by taking the value of the IUsbMonitor.Devices property and use to enumerate the
installed USB devices. There are two ways for using this interface. You can get the Count property value to
get the number of devices in the collection and then use the default Item property to get the IDevice
interface for each device in a collection.

Another way of enumerating the devices in the collection is to take the value of the _NewEnum property to
get the object exposing the IEnumVARIANT interface and use its properties and members to enumerate the
collection.

Note that usually this process is somehow automated in scripting and CLR languages. You will find the code
samples in topics for the _NewEnum and Item properties.

Declaration

TypeScript
interface IDeviceCollection extends IDispatch {
 // Properties
 readonly [Item: number]: IDevice;
 Count: number;
 _NewEnum: object;
}

C#
public interface IDeviceCollection : IDispatch
{
 // Properties
 IDevice Item[int Index] { get; }
 int Count { get; set; }
 object _NewEnum { get; set; }
}

C++
struct IDeviceCollection : IDispatch
{
 // Properties
 IDevicePtr Item(_variant_t Index); // get
 long Count; // get set
 IUnknownPtr _NewEnum; // get set
};

IDeviceCollection Properties

Item

USB Monitoring Control Documentation Reference

61

idevice.html

TypeScript
readonly [Item: number]: IDevice;

C#
IDevice Item[int Index] { get; }

C++
IDevicePtr Item(_variant_t Index); // get

Description

Reference to Device object.

Count

TypeScript
Count: number;

C#
int Count { get; set; }

C++
long Count; // get set

Description

Number of devices.

_NewEnum

TypeScript
_NewEnum: object;

C#
object _NewEnum { get; set; }

C++
IUnknownPtr _NewEnum; // get set

Description

Returns the enumerator object implementing IEnumVARIANT interface.

IDevice

_IUsbMonitorEvents Interface

Description

You implement this interface to receive the events fired by the USB Monitor Control library's main object.

The USB Monitor Control calls the _IUsbMonitorEvents.OnChange method when there is a change in the
device collection entries. Please see documentation for the _IMonitoringEvents interface for information on
binding to the event source.

Declaration

USB Monitoring Control Documentation Reference

62

_imonitoringevents.html

TypeScript
// This interface is not available in scripting environment

C#
public interface _IUsbMonitorEvents
{
 // Methods
 void OnChange();
}

C++
struct _IUsbMonitorEvents : IDispatch
{
 // Methods
 HRESULT OnChange();
};

_IUsbMonitorEvents Methods

OnChange

TypeScript
// This method is not available in scripting environment

C#
void OnChange();

C++
HRESULT OnChange();

Description

Fired when device appears or disappears.

_IMonitoringEvents Interface

Description

An event source interface for managed and scripting clients.

You do not explicitly implement this interface. It is usually implemented by the language runtime. You
register the so-called “events”, one for each method of this interface to handle specific monitored requests.

This interface is used by the managed and scripting clients. The language runtime usually uses the methods
of this interface automatically, allowing the client to register the events, callbacks or delegates, which are
called when the USB Monitoring Control library fires these events. There is a proprietary interface in each
managed language to connect to event sources. You will see Microsoft C# examples in this documentation,
for other languages, please consult their documentation for a proper syntax to handle events.

Declaration

TypeScript
// This interface is not available in scripting environment

C#
public interface _IMonitoringEvents
{
 // Methods
 void OnClassEndpoint(DateTime time,
 byte[] array,

USB Monitoring Control Documentation Reference

63

 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value,
 ushort Index);
 void OnClassInterface(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value,
 ushort Index);
 void OnClassOther(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value);
 void OnClearFeatureToDevice(DateTime time,
 byte[] array,
 ushort FeatureSelector);
 void OnClearFeatureToEndpoint(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);
 void OnClearFeatureToInterface(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);
 void OnClearFeatureToOther(DateTime time,
 byte[] array,
 ushort FeatureSelector);
 void OnConnection(DateTime time,
 ConnectionState cs,
 string Name);
 void OnControlTransfer(DateTime time,
 byte[] array,
 uint payloadOffset,
 uint payloadSize);
 void OnGetConfiguration(DateTime time, byte[] array);
 void OnGetCurrentFrameNumber(DateTime time,
 byte[] array,
 uint FrameNumber);
 void OnGetDescriptorFromDevice(DateTime time,
 byte[] array,
 byte Index,
 byte DescriptorType,
 ushort LanguageId);
 void OnGetDescriptorFromEndpoint(DateTime time,
 byte[] array,
 byte Index,
 byte DescriptorType,
 ushort LanguageId);
 void OnGetDescriptorFromInterface(DateTime time,
 byte[] array,
 byte Index,
 byte DescriptorType,
 ushort LanguageId);
 void OnGetFrameLength(DateTime time,
 byte[] array,
 uint FrameLength,
 uint FrameNumber);
 void OnGetInterface(DateTime time, byte[] array, ushort Interface);
 void OnGetStatusFromDevice(DateTime time, byte[] array);
 void OnGetStatusFromEndpoint(DateTime time, byte[] array, ushort Index);
 void OnGetStatusFromInterface(DateTime time, byte[] array, ushort Index);
 void OnGetStatusFromOther(DateTime time, byte[] array);
 void OnIsochTransfer(DateTime time,
 byte[] array,
 uint nTransferFlags,
 uint StartFrame,
 uint NumberOfPackets,
 uint ErrorCount);

USB Monitoring Control Documentation Reference

64

 uint ErrorCount);
 void OnPacketDown(DateTime time, byte[] array);
 void OnPacketUp(DateTime time, byte[] array);
 void OnQueryID(DateTime time);
 void OnQueryInterface(DateTime time);
 void OnQueryText(DateTime time);
 void OnReleaseFrameLengthControl(DateTime time, byte[] array, ushort Interface);
 void OnResetPipe(DateTime time, byte[] array, ulong PipeHandle);
 void OnSelectConfiguration(DateTime time, byte[] array);
 void OnSelectInterface(DateTime time,
 byte[] array,
 uint InterfaceNumber,
 byte AlternateSetting);
 void OnSetDescriptorToDevice(DateTime time,
 byte[] array,
 byte Index,
 byte DescriptorType,
 ushort LanguageId);
 void OnSetDescriptorToEndpoint(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);
 void OnSetDescriptorToInterface(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index,
 byte DescriptorType,
 ushort LanguageId);
 void OnSetFeatureToDevice(DateTime time, byte[] array, ushort FeatureSelector);
 void OnSetFeatureToEndpoint(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);
 void OnSetFeatureToInterface(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);
 void OnSetFeatureToOther(DateTime time,
 byte[] array,
 ushort FeatureSelector);
 void OnSetFrameLength(DateTime time, byte[] array, int FrameLengthDelta);
 void OnSurpriseRemoval(DateTime time);
 void OnTakeFrameLengthControl(DateTime time, byte[] array, ushort Interface);
 void OnUrb(DateTime time, byte[] array);
 void OnVendorDevice(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value);
 void OnVendorEndpoint(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value,
 ushort Index);
 void OnVendorInterface(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value,
 ushort Index);
 void OnVendorOther(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value);
 void OnAbortPipe(DateTime time,
 byte[] array,
 ulong PipeHandle);
 void OnBulkOrInterruptTransfer(DateTime time,
 byte[] array,

USB Monitoring Control Documentation Reference

65

 byte[] array,
 uint payloadOffset,
 uint payloadSize);
 void OnClassDevice(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value);
}

C++
// This interface is not available in native environment

_IMonitoringEvents Methods

OnClassEndpoint

TypeScript
// This method is not available in scripting environment

C#
void OnClassEndpoint(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLASS_ENDPOINT is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

USB Monitoring Control Documentation Reference

66

OnClassInterface

TypeScript
// This method is not available in scripting environment

C#
void OnClassInterface(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLASS_INTERFACE is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClassOther

TypeScript
// This method is not available in scripting environment

C#
void OnClassOther(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value);

C++
// This method is not available in native environment

USB Monitoring Control Documentation Reference

67

Parameters

time

The time of the event.
array

Packet data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLASS_OTHER is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClearFeatureToDevice

TypeScript
// This method is not available in scripting environment

C#
void OnClearFeatureToDevice(DateTime time,
 byte[] array,
 ushort FeatureSelector);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLEAR_FEATURE_TO_DEVICE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClearFeatureToEndpoint

USB Monitoring Control Documentation Reference

68

TypeScript
// This method is not available in scripting environment

C#
void OnClearFeatureToEndpoint(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Index

Specifies the device-defined index, returned by a successful configuration request. The bus driver will
copy the value in the Index member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLEAR_FEATURE_TO_ENDPOINT is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClearFeatureToInterface

TypeScript
// This method is not available in scripting environment

C#
void OnClearFeatureToInterface(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

USB Monitoring Control Documentation Reference

69

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Index

Specifies the device-defined index, returned by a successful configuration request. The bus driver will
copy the value in the Index member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLEAR_FEATURE_TO_INTERFACE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnClearFeatureToOther

TypeScript
// This method is not available in scripting environment

C#
void OnClearFeatureToOther(DateTime time,
 byte[] array,
 ushort FeatureSelector);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLEAR_FEATURE_TO_OTHER is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnConnection

TypeScript
// This method is not available in scripting environment

C#
void OnConnection(DateTime time,
 ConnectionState cs,
 string Name);

C++
// This method is not available in native environment

USB Monitoring Control Documentation Reference

70

Parameters

time

The time of the event.
cs

The value of this parameter is DeviceConnected if device is connected and DeviceDisconnected if
device is disconnected.

Name

Name of the device. You can get it by retrieving IDevice.Name at any time.

Description

Called when the control attaches/detaches itself to/from the USB device. (it is fired when USB packet with
EventType == EVENT_DEVICECONNECTED or EventType == EVENT_DEVICEDISCONNECTED is received).

OnControlTransfer

TypeScript
// This method is not available in scripting environment

C#
void OnControlTransfer(DateTime time,
 byte[] array,
 uint payloadOffset,
 uint payloadSize);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
payloadOffset

Payload offset, in bytes.
payloadSize

Payload size, in bytes.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CONTROL_TRANSFER is received.
See _URB_CONTROL_DESCRIPTOR_REQUEST in MSDN for more details. The library decodes several parameters
from this packet.

OnGetConfiguration

TypeScript
// This method is not available in scripting environment

C#
void OnGetConfiguration(DateTime time, byte[] array);

USB Monitoring Control Documentation Reference

71

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.

Description

See _URB_BULK_OR_INTERRUPT_TRANSFER in MSDN for more details.

OnGetCurrentFrameNumber

TypeScript
// This method is not available in scripting environment

C#
void OnGetCurrentFrameNumber(DateTime time,
 byte[] array,
 uint FrameNumber);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FrameNumber

Contains the current 32-bit frame number, on the USB bus, on return from the host controller driver.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_CURRENT_FRAME_NUMBER is
received. See _URB_GET_CURRENT_FRAME_NUMBER in MSDN for more details. The library decodes several
parameters from this packet.

OnGetDescriptorFromDevice

TypeScript
// This method is not available in scripting environment

C#
void OnGetDescriptorFromDevice(DateTime time,
 byte[] array,
 byte Index,
 byte DescriptorType,
 ushort LanguageId);

USB Monitoring Control Documentation Reference

72

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Original URB packet data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE , USB_CONFIGURATION_DESCRIPTOR_TYPE or
USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set
in DescriptorType. This member must be set to zero for any other value in DescriptorType.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_DESCRIPTOR_FROM_DEVICE is
received. See _URB_CONTROL_DESCRIPTOR_REQUEST for more details. The library decodes several parameters
from this packet.

OnGetDescriptorFromEndpoint

TypeScript
// This method is not available in scripting environment

C#
void OnGetDescriptorFromEndpoint(DateTime time,
 byte[] array,
 byte Index,
 byte DescriptorType,
 ushort LanguageId);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Original URB packet data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE , USB_CONFIGURATION_DESCRIPTOR_TYPE or

USB Monitoring Control Documentation Reference

73

USB_STRING_DESCRIPTOR_TYPE .
LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set
in DescriptorType. This member must be set to zero for any other value in DescriptorType.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_DESCRIPTOR_FROM_ENDPOINT
is received. See _URB_CONTROL_DESCRIPTOR_REQUEST for more details. The library decodes several
parameters from this packet.

OnGetDescriptorFromInterface

TypeScript
// This method is not available in scripting environment

C#
void OnGetDescriptorFromInterface(DateTime time,
 byte[] array,
 byte Index,
 byte DescriptorType,
 ushort LanguageId);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Original URB packet data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE , USB_CONFIGURATION_DESCRIPTOR_TYPE or
USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set
in DescriptorType. This member must be set to zero for any other value in DescriptorType.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_DESCRIPTOR_FROM_INTERFACE
is received. See _URB_CONTROL_DESCRIPTOR_REQUEST for more details. The library decodes several
parameters from this packet.

OnGetFrameLength

TypeScript
// This method is not available in scripting environment

USB Monitoring Control Documentation Reference

74

C#
void OnGetFrameLength(DateTime time,
 byte[] array,
 uint FrameLength,
 uint FrameNumber);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FrameLength

Contains the length of each bus frame in USB-defined bit times.
FrameNumber

Contains the earliest bus frame number that the frame length can be altered on return from the host
controller driver.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_FRAME_LENGTH is received.
See _URB_GET_FRAME_LENGTH in MSDN for more details. The library decodes several parameters from this
packet.

OnGetInterface

TypeScript
// This method is not available in scripting environment

C#
void OnGetInterface(DateTime time, byte[] array, ushort Interface);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
Interface

Specifies the device-defined index of the interface descriptor being retrieved.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_INTERFACE is received. See
_URB_CONTROL_GET_INTERFACE_REQUEST in MSDN for more details. The library decodes several parameters
from this packet.

USB Monitoring Control Documentation Reference

75

OnGetStatusFromDevice

TypeScript
// This method is not available in scripting environment

C#
void OnGetStatusFromDevice(DateTime time, byte[] array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_STATUS_FROM_DEVICE is
received. See _URB_CONTROL_GET_STATUS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetStatusFromEndpoint

TypeScript
// This method is not available in scripting environment

C#
void OnGetStatusFromEndpoint(DateTime time, byte[] array, ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_STATUS_FROM_ENDPOINT is
received. See _URB_CONTROL_GET_STATUS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetStatusFromInterface

TypeScript
// This method is not available in scripting environment

USB Monitoring Control Documentation Reference

76

C#
void OnGetStatusFromInterface(DateTime time, byte[] array, ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_STATUS_FROM_INTERFACE is
received. See _URB_CONTROL_GET_STATUS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnGetStatusFromOther

TypeScript
// This method is not available in scripting environment

C#
void OnGetStatusFromOther(DateTime time, byte[] array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_GET_STATUS_FROM_OTHER is
received. See _URB_CONTROL_GET_STATUS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnIsochTransfer

TypeScript
// This method is not available in scripting environment

USB Monitoring Control Documentation Reference

77

C#
void OnIsochTransfer(DateTime time,
 byte[] array,
 uint nTransferFlags,
 uint StartFrame,
 uint NumberOfPackets,
 uint ErrorCount);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
nTransferFlags

Specifies zero, one, or a combination of the following flags: USBD_TRANSFER_DIRECTION_IN ,
USBD_SHORT_TRANSFER_OK , USBD_START_ISO_TRANSFER_ASAP .

StartFrame

Specifies the frame number the transfer should begin on. This variable must be within a system-defined
range of the current frame. The range is specified by the constant USBD_ISO_START_FRAME_RANGE . If
START_ISO_TRANSFER_ASAP is set in TransferFlags , this member contains the frame number that the
transfer began on, when the request is returned by the host controller driver. Otherwise, this member
must contain the frame number that this transfer will begin on.

NumberOfPackets

Specifies the number of packets described by the variable-length array member IsoPacket.
ErrorCount

Contains the number of packets that completed with an error condition on return from the host
controller driver.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_ISOCH_TRANSFER is received. See
_URB_ISOCH_TRANSFER and USBD_ISO_PACKET_DESCRIPTOR in MSDN for more details. The library decodes
several parameters from this packet.

OnPacketDown

TypeScript
// This method is not available in scripting environment

C#
void OnPacketDown(DateTime time, byte[] array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.

USB Monitoring Control Documentation Reference

78

array

Packet data.

Description

Called when packet is going down.

OnPacketUp

TypeScript
// This method is not available in scripting environment

C#
void OnPacketUp(DateTime time, byte[] array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.

Description

Called when packet is going up.

OnQueryID

TypeScript
// This method is not available in scripting environment

C#
void OnQueryID(DateTime time);

C++
// This method is not available in native environment

Parameters

time

The time of the event.

Description

Called when id is queried by EVENT_DEVICEQUERYID .

OnQueryInterface

TypeScript
// This method is not available in scripting environment

USB Monitoring Control Documentation Reference

79

C#
void OnQueryInterface(DateTime time);

C++
// This method is not available in native environment

Parameters

time

The time of the event.

Description

Called when interface is queried by EVENT_DEVICEQUERYINTERFACE .

OnQueryText

TypeScript
// This method is not available in scripting environment

C#
void OnQueryText(DateTime time);

C++
// This method is not available in native environment

Parameters

time

The time of the event.

Description

Called when text is queried by EVENT_DEVICEQUERYTEXT .

OnReleaseFrameLengthControl

TypeScript
// This method is not available in scripting environment

C#
void OnReleaseFrameLengthControl(DateTime time, byte[] array, ushort Interface);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
Interface

Specifies the device-defined index of the interface descriptor being retrieved.

USB Monitoring Control Documentation Reference

80

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_RELEASE_FRAME_LENGTH_CONTROL
is received. See _URB_CONTROL_GET_INTERFACE_REQUEST in MSDN for more details. The library decodes
several parameters from this packet.

OnResetPipe

TypeScript
// This method is not available in scripting environment

C#
void OnResetPipe(DateTime time, byte[] array, ulong PipeHandle);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
PipeHandle

Specifies an opaque handle to the bulk or interrupt pipe. The host controller driver returns this handle
when the client driver selects the device configuration with a URB of type
URB_FUNCTION_SELECT_CONFIGURATION or when the client driver changes the settings for an interface
with a URB of type URB_FUNCTION_SELECT_INTERFACE .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_RESET_PIPE is received. See
_URB_PIPE_REQUEST in MSDN for more details.

OnSelectConfiguration

TypeScript
// This method is not available in scripting environment

C#
void OnSelectConfiguration(DateTime time, byte[] array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.

Description

USB Monitoring Control Documentation Reference

81

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SELECT_CONFIGURATION is
received. See _URB_SELECT_CONFIGURATION in MSDN for more details.

OnSelectInterface

TypeScript
// This method is not available in scripting environment

C#
void OnSelectInterface(DateTime time,
 byte[] array,
 uint InterfaceNumber,
 byte AlternateSetting);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
InterfaceNumber

Specifies the device-defined index identifier for this interface.
AlternateSetting

Specifies a device-defined index identifier that indicates which alternate setting this interface is using,
should use, or describes.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SELECT_INTERFACE is received.
See _URB_SELECT_INTERFACE in MSDN for more details. The library decodes several parameters from this
packet.

OnSetDescriptorToDevice

TypeScript
// This method is not available in scripting environment

C#
void OnSetDescriptorToDevice(DateTime time,
 byte[] array,
 byte Index,
 byte DescriptorType,
 ushort LanguageId);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

USB Monitoring Control Documentation Reference

82

Packet data.
Index

Specifies the device-defined index of the descriptor that is being retrieved or set.
DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE , USB_CONFIGURATION_DESCRIPTOR_TYPE , USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set in
DescriptorType . This member must be set to zero for any other value in DescriptorType .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_DESCRIPTOR_TO_DEVICE is
received. See _URB_CONTROL_DESCRIPTOR_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetDescriptorToEndpoint

TypeScript
// This method is not available in scripting environment

C#
void OnSetDescriptorToEndpoint(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Index

Specifies the device-defined index, returned by a successful configuration request, if the request is for
an endpoint or interface. Otherwise, Index must be zero. The bus driver will copy the value in the Index
member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_DESCRIPTOR_TO_ENDPOINT is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetDescriptorToInterface

USB Monitoring Control Documentation Reference

83

TypeScript
// This method is not available in scripting environment

C#
void OnSetDescriptorToInterface(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index,
 byte DescriptorType,
 ushort LanguageId);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Index

Specifies the device-defined index, returned by a successful configuration request, if the request is for
an endpoint or interface. Otherwise, Index must be zero. The bus driver will copy the value in the Index
member to the wIndex field of the setup packet.

DescriptorType

Indicates what type of descriptor is being retrieved or set. One of the following values must be specified:
USB_DEVICE_DESCRIPTOR_TYPE , USB_CONFIGURATION_DESCRIPTOR_TYPE , USB_STRING_DESCRIPTOR_TYPE .

LanguageId

Specifies the language ID of the descriptor to be retrieved when USB_STRING_DESCRIPTOR_TYPE is set in
DescriptorType . This member must be set to zero for any other value in DescriptorType .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_DESCRIPTOR_TO_INTERFACE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetFeatureToDevice

TypeScript
// This method is not available in scripting environment

C#
void OnSetFeatureToDevice(DateTime time, byte[] array, ushort FeatureSelector);

C++
// This method is not available in native environment

Parameters

USB Monitoring Control Documentation Reference

84

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FEATURE_TO_DEVICE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetFeatureToEndpoint

TypeScript
// This method is not available in scripting environment

C#
void OnSetFeatureToEndpoint(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Index

Specifies the device-defined index, returned by a successful configuration request. The bus driver will
copy the value in the Index member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FEATURE_TO_ENDPOINT is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetFeatureToInterface

TypeScript
// This method is not available in scripting environment

USB Monitoring Control Documentation Reference

85

C#
void OnSetFeatureToInterface(DateTime time,
 byte[] array,
 ushort FeatureSelector,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

Index

Specifies the device-defined index, returned by a successful configuration request. The bus driver will
copy the value in the Index member to the wIndex field of the setup packet.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FEATURE_TO_INTERFACE is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetFeatureToOther

TypeScript
// This method is not available in scripting environment

C#
void OnSetFeatureToOther(DateTime time,
 byte[] array,
 ushort FeatureSelector);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FeatureSelector

Specifies the USB-defined feature code to be cleared or set. Using a feature code that is invalid, cannot
be set, or cannot be cleared will cause the target to stall. The bus driver will copy the value in the
FeatureSelector member to the wValue field of the setup packet.

USB Monitoring Control Documentation Reference

86

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FEATURE_TO_OTHER is
received. See _URB_CONTROL_FEATURE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnSetFrameLength

TypeScript
// This method is not available in scripting environment

C#
void OnSetFrameLength(DateTime time, byte[] array, int FrameLengthDelta);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
FrameLengthDelta

Specifies the number of USB-defined bit times to be added or subtracted from the current frame length.
The maximum increase or decrease per URB is 1.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_SET_FRAME_LENGTH is received.
See _URB_SET_FRAME_LENGTH in MSDN for more details. The library decodes several parameters from this
packet.

OnSurpriseRemoval

TypeScript
// This method is not available in scripting environment

C#
void OnSurpriseRemoval(DateTime time);

C++
// This method is not available in native environment

Parameters

time

The time of the event.

Description

Called when device is removed by EVENT_DEVICESURPRISEREMOVAL .

OnTakeFrameLengthControl

USB Monitoring Control Documentation Reference

87

TypeScript
// This method is not available in scripting environment

C#
void OnTakeFrameLengthControl(DateTime time, byte[] array, ushort Interface);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
Interface

Specifies the device-defined index of the interface descriptor being retrieved.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_TAKE_FRAME_LENGTH_CONTROL is
received. See _URB_CONTROL_GET_INTERFACE_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

OnUrb

TypeScript
// This method is not available in scripting environment

C#
void OnUrb(DateTime time, byte[] array);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.

Description

Called when URB is transmitted. See USBPACKET_URB for more information.

OnVendorDevice

TypeScript
// This method is not available in scripting environment

USB Monitoring Control Documentation Reference

88

C#
void OnVendorDevice(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_VENDOR_DEVICE is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more information. The library decodes several
parameters from this packet.

OnVendorEndpoint

TypeScript
// This method is not available in scripting environment

C#
void OnVendorEndpoint(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.

USB Monitoring Control Documentation Reference

89

RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request .

Index

Specifies the device-defined index, returned by a successful configuration request.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_VENDOR_ENDPOINT is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more information. The library decodes several
parameters from this packet.

OnVendorInterface

TypeScript
// This method is not available in scripting environment

C#
void OnVendorInterface(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value,
 ushort Index);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request .

Index

Specifies the device-defined index, returned by a successful configuration request.

USB Monitoring Control Documentation Reference

90

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_VENDOR_INTERFACE is received.
See _URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more information. The library decodes several
parameters from this packet.

OnVendorOther

TypeScript
// This method is not available in scripting environment

C#
void OnVendorOther(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request, that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_VENDOR_OTHER is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more information. The library decodes several
parameters from this packet.

OnAbortPipe

TypeScript
// This method is not available in scripting environment

C#
void OnAbortPipe(DateTime time,
 byte[] array,
 ulong PipeHandle);

USB Monitoring Control Documentation Reference

91

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
PipeHandle

Specifies an opaque handle to the bulk or interrupt pipe. The host controller driver returns this handle
when the client driver selects the device configuration with a URB of type
URB_FUNCTION_SELECT_CONFIGURATION or when the client driver changes the settings for an interface
with a URB of type URB_FUNCTION_SELECT_INTERFACE .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_ABORT_PIPE is received. See
_URB_PIPE_REQUEST in MSDN for more details.

OnBulkOrInterruptTransfer

TypeScript
// This method is not available in scripting environment

C#
void OnBulkOrInterruptTransfer(DateTime time,
 byte[] array,
 uint payloadOffset,
 uint payloadSize);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
payloadOffset

Payload offset, in bytes.
payloadSize

Payload size, in bytes.

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_BULK_OR_INTERRUPT_TRANSFER is
received. See _URB_BULK_OR_INTERRUPT_TRANSFER in MSDN for more details.

OnClassDevice

USB Monitoring Control Documentation Reference

92

TypeScript
// This method is not available in scripting environment

C#
void OnClassDevice(DateTime time,
 byte[] array,
 byte RequestTypeReservedBits,
 byte Request,
 ushort Value);

C++
// This method is not available in native environment

Parameters

time

The time of the event.
array

Packet data.
RequestTypeReservedBits

Specifies a value, from 4 to 31 inclusive, that becomes part of the request type code in the USB-defined
setup packet. This value is defined by USB for a class request or the vendor for a vendor request.

Request

Specifies the USB or vendor-defined request code for the device, interface, endpoint, or other device-
defined target.

Value

Specifies a value, specific to Request , that becomes part of the USB-defined setup packet for the target.
This value is defined by the creator of the code used in Request .

Description

Fired when URB packet with urb.UrbHeader.Function == URB_FUNCTION_CLASS_DEVICE is received. See
_URB_CONTROL_VENDOR_OR_CLASS_REQUEST in MSDN for more details. The library decodes several
parameters from this packet.

Enumerations
ConnectionState Enumeration

Symbol Value Description
DeviceDisconnected 0x00000000 Device is connected.
DeviceConnected 0x00000001 Device is disconnected. For example: flash drive is

removed from computer.

Functions
ConfigureLibrary Function

ConfigureLibrary

TypeScript
// This method is not available in scripting environment

USB Monitoring Control Documentation Reference

93

C#
// This method is not available in managed environment

C++
DWORD ConfigureLibrary(BOOL bInstall, BOOL bUI);

Parameters

bInstall

TRUE to install monitoring capabilities, FALSE to uninstall.
bUI

TRUE to display the progress dialog while configuring the system, FALSE to suppress it

Return Value

Returns the error code. See the Remarks section for details.

Description

Enables or disables the monitoring capabilities of the control. The function will restart all USB devices on the
computer as part of its operation. You must be sure that no critical work is performed through one of these
devices. If any USB device is being used at this time, the operation succeeds, but the function returns 1,
indicating that the restart is required. In order to eliminate the need to restart the computer, make sure the
USB devices are not being used before calling this function.

If you call this function, passing TRUE for the bUI parameter, the function displays the top-most progress
dialog. The dialog shows the progress of operation. Please note however, that it does not although let the
user to interrupt the process and does not provide the progress to the calling application. Depending on the
number of installed USB devices on your computer, and their “nature”, the process can take some time.

USB Monitoring Control Documentation Reference

94

	Table of Contents
	About USBMC
	Introduction
	Library Description
	Library Features

	Licensing
	Installation
	Library Redistribution Policy
	General Library Distribution Information
	Manual Redistribution
	Windows Installer Merge Module
	Library Activation on Client Computers

	Activating USB Monitoring Control
	Manual Activation
	Activation from Code

	Using USBMC
	Usage Environments
	Native Environment
	Managed Environment

	General Guidelines
	Common Information
	Native Conventions
	Dual Interfaces
	INativeListener Local Interface
	Time Values
	INativeListener Methods Parameters

	Managed Conventions
	Dual Interfaces
	Event Interfaces

	Processing Sequence
	How To
	How to Initialize the USBMC Library
	Native Environment
	Managed Environment

	How to Enumerate USB Devices
	How to Retrieve USB Device Properties
	How to Create a Monitoring Object
	How to Receive Monitored Events

	Reference
	Interfaces
	IDevice Interface
	Declaration
	IDevice Properties

	IUsbMonitor Interface
	Declaration
	IUsbMonitor Properties
	IUsbMonitor Methods

	INativeListener Interface
	Declaration
	INativeListener Methods

	IMonitoring Interface
	Declaration
	IMonitoring Properties
	IMonitoring Methods

	IDeviceCollection Interface
	Declaration
	IDeviceCollection Properties

	_IUsbMonitorEvents Interface
	Declaration
	_IUsbMonitorEvents Methods

	_IMonitoringEvents Interface
	Declaration
	_IMonitoringEvents Methods

	Enumerations
	ConnectionState Enumeration

	Functions
	ConfigureLibrary Function
	ConfigureLibrary

