
1
10
10
10
11
11
12
12
12
13
13
14
14
14
14
14
14
14
14
14
14
15
15
15
15
15
16
16
16
16
16
16
17
17
17
17
17
17
18
18
18
18
18
18
19
19
19
19
20
21

Table of Contents
Table of Contents
Virtual Serial Port Tools Documentation

Virtual Bridges
Alias Ports
Shared Ports
Split Ports
TCP/IP Ports (RFC2217, RAW)
Script Ports
Remote Ports
Pipe-connected Port
Listening Port

Supported Configurations
Virtual Bridges

Local Bridge
Connection
Operation
Configuration Utility
Custom Pin-Out

Remote Bridge
Connection
Operation
Configuration Utility
Custom Pin-Out

Bridge Pin-Outs
Configuring Pin-Outs
Validation

Alias Ports
Connection
Operation
Configuration Utility

Shared Ports
Connection
Operation
Configuration Utility

Split Ports
Connection
Operation
Configuration Utility

TCP/IP Ports
Connection
Operation
Configuration Utility

Remote Ports
Connection
Operation
Configuration Utility

Script Ports
Overview
Script Structure
Send Data Model

Virtual Serial Port Tools Documentation Table of Contents

1

21
21
22
22
22
23
23
23
23
23
23
24
24
25
25
25
25
26
26
26
27
28
29
29
29
31
31
31
31
33
33
34
34
34
34
35
35
35
36
36
36
36
37
37
38
39
39
40
40
41
42
43
43

Push Model
Pull Model

Receiving Data
Device Script API
Script Debugging

Pipe Ports
Connection
Operation
Configuration Utility

Listening Ports
Creation
Operation
Configuration Utility

Sharing COM Ports over Network
Remote Serial Ports Server
TCP/IP Serial Ports Server
Remote Serial Ports Server

Windows Service Mode
Stand-alone Mode
Server Configuration Utility
Command-Line Parameters

TCP Serial Ports Server
Windows Service Mode
Stand-alone Mode
TCP/IP Server Configuration Utility
Command-Line Parameters

Basic Syntax
Advanced Syntax
Options

Configuration Utility
Create Local Serial Bridges

Bridge Creation Options
Create Remote Serial Bridges

Bridge Creation Options
Bridge Creation Options

Pin-Out Configuration
Creating New Connection
Deleting Connection

Creating TCP Ports
Creating TCP/IP Ports in Connecting Mode
Creating TCP/IP Ports in Listening Mode

Create Alias/Mapped Serial Ports
Create Shared Serial Ports
Create Split Serial Ports
Create Script Serial Ports
Port Settings Overrides
Connect Remote Serial Port
Create Pipe-connected Serial Ports
Create Listening Serial Ports
Exporting Configuration
Compatibility Options

Command-Line Utility
Command-line Parameters

Virtual Serial Port Tools Documentation Table of Contents

2

48
48
48
48
48
48
50
50
50
50
51
51
52
52
53
53
53
54
54
55
55
56
56
57
57
58
58
58
59
59
60
60
60
61
62
62
62
63
63
63
64
64
64
65
65
65
65
66
66
66
66
67
67

Redistribution
Installer Command-Line

Unattended Installation
Unattended Uninstallation

License Installation
Server Components Redistribution

VSPT API
Using from Native Code
Using from C#
Using from JavaScript
Using from TypeScript
ISerialPortLibrary Interface

ISerialPortLibrary Properties
compatibilityFlags

ISerialPortLibrary Methods
createAliasPort
createBridgePort
createSharedPort
createScriptPort
createTcpPort
createRemotePort
createPipePort
getRemoteSharedPorts
getRemoteSharedPortsJs
getPorts
getPortsJs
getPortsJs
getPortsJs
getPortsJs
getPortsJs
getPortsJs
getPortsJs
getPortsJs
createTimeoutsObject
addListener
removeListener
installLicenseFile
installLicenseInMemory

ISerialPortLibraryListener Interface
Declaration
ISerialPortLibraryListener Methods

added
deleted

IDevice Interface
Declaration
IDevice Properties

port
devicePath
openingInfo

IDevice Methods
deleteDevice

IConfigurableDevice Interface
Declaration

Virtual Serial Port Tools Documentation Table of Contents

3

67
67
68
68
68
69
69
69
69
70
70
70
70
70
72
72
72
73
73
73
73
74
74
74
75
75
75
76
76
76
77
77
77
77
77
78
78
78
78
79
79
79
79
80
80
81
81
81
81
82
82
82
83

IConfigurableDevice Properties
baudRate
dataBits
parity
stopBits
flowControl
timeouts

IAliasPortDevice Interface
Declaration
IAliasPortDevice Properties

aliasPort
targetDevicePath

IBridgePortDevice Interface
Declaration
IBridgePortDevice Properties

bridgePort
bridgeServer
isLocal
isListening
remoteLogin
remoteDomain
remotePassword
securityDescriptor
emulateBaudrate
emulateTxOverflow
crossoverProbability
DTR
DSR
DCD
RTS
CTS
RI

IBridgePortDevice Methods
restoreDefaultPins
startListening

ISharedPortDevice Interface
Declaration
ISharedPortDevice Properties

sharedPort
ITcpPortDevice Interface

Declaration
ITcpPortDevice Properties

remoteHost
remoteTcpPort
localAddress
localTcpPort
protocol
reconnectTimeout
bufferSize

IRemotePortDevice Interface
Declaration
IRemotePortDevice Properties

remoteHost

Virtual Serial Port Tools Documentation Table of Contents

4

83
83
83
84
84
84
85
85
85
85
86
86
86
87
87
88
88
88
89
89
89
89
90
91
92
92
92
93
93
93
93
94
94
94
95
95
96
96
96
97
97
97
98
98
98
99
99
99
99

100
100
100
100

remotePort
connectionTimeout
connectionAttempts
login
password
domain

Example
IRemotePortDescription Interface

IRemotePortDescription Properties
name
port

IPipePortDevice Interface
Declaration
IPipePortDevice Properties

pipeName
numberOfInstances
outputBufferSize
inputBufferSize
defaultTimeout
securityDescriptor

IPipePortDevice Methods
configureCreatePipe
configureCreatePipe2
configureConnectPipe

IScriptPortDevice Interface
Declaration
IScriptPortDevice Properties

scriptPath
validationErrors
logPath
initializationValue

IScriptPortDevice Methods
setScriptFile
setScriptText
setScriptParam

ITimeouts Interface
Declaration
ITimeouts Properties

readIntervalTimeout
readTotalTimeoutMultiplier
readTotalTimeoutConstant
writeTotalTimeoutMultiplier
writeTotalTimeoutConstant

IOpeningInfo Interface
Declaration
IOpeningInfo Properties

baudRate
byteSize
parity
stopBits
processId
processName

SerialPortType Enumeration

Virtual Serial Port Tools Documentation Table of Contents

5

101
101
101
101
102
102
103
103
103
103
104
104
104
104
104
105
105
105
106
106
106
107
107
108
108
109
109
109
109
109
110
110
111
111
112
112
112
113
113
113
113
114
114
114
115
115
115
115
116
116
116
116
117

PortParity Enumeration
PortStopBits Enumeration
PortFlowControl Enumeration
DestinationPins Enumeration
CompatibilityFlags Enumeration
TcpPortProtocol Enumeration

Device Script API
Global Object
File System Object
Network Object
HTTP Object
Global Interface

Declaration
IGlobals Properties

port
fs
net
http

IGlobals Methods
log
delay
async
cancelAsync
createDevice
createDeviceAsync

Port API
IPort Interface

Declaration
IPort Methods

provideReceivedData
provideReceivedData
provideReceivedData
provideReceivedData
getSentData
setError
setEventMask
clearEventMask

IScriptDevice Interface
Declaration
IScriptDevice Methods

onSend
setParam

Common.Encoding Enumeration
Port.WriteAs Enumeration
Port.EventMask Enumeration

File system API
IFileManager Interface

Declaration
IFileManager Properties

tempFolder
windowsFolder
systemFolder
programDataFolder

Virtual Serial Port Tools Documentation Table of Contents

6

117
117
118
118
119
119
120
120
121
121
121
122
122
122
122
123
123
123
124
124
124
125
125
125
125
126
126
126
126
127
127
127
128
128
128
128
129
129
129
129
130
130
130
131
131
132
132
132
132
132
133
133
133

IFileManager Methods
createFile
deleteFile
enumFiles
copyFile
moveFile
createFolder
deleteFolder
loadTextFile

IFile Interface
Declaration
IFile Properties

currentPosition
size
isOpen

IFile Methods
read
write
setEnd
close

FS.OpenMode Enumeration
FS.Access Enumeration
FS.Share Enumeration

Network API
INetworkManager Interface

Declaration
INetworkManager Methods

createTcpSocket
createUdpSocket
createTcpListener

ITcpSocket Interface
Declaration

IUdpSocket Interface
Declaration
IUdpSocket Methods

bind
ISocket Interface

Declaration
ISocket Methods

connect
close
send
send
send
receive

ITcpListener Interface
Declaration
ITcpListener Methods

bind
bind
listen

HTTP API
IHttpClient Interface

Virtual Serial Port Tools Documentation Table of Contents

7

133
134
134
134
135
135
136
137
137
137
137
137
138
138
138
138
138
139
139
139
139
140
140
140
140
141
141
141
141
141
142
142
143
143
145
146
146

Declaration
IHttpClient Methods

request
get
post
getString
getBlob

IHttpRequestOptions Interface
Declaration
IHttpRequestOptions Properties

headers
body
encoding
mediaType

IHttpHeader Interface
IHttpHeader Properties

name
value

IHttpResponse Interface
Declaration
IHttpResponse Properties

statusCode
isSuccessful
content
blob
stream

IInputStream Interface
Declaration
IInputStream Methods

readChunk
UnicodeEncoding Enumeration

IOCTL_SCRIPTPORT_SET_PARAM Device I/O Request
Open Source Components

TypeScript
ChakraCore
Boost
Eigen3

Virtual Serial Port Tools Documentation Table of Contents

8

Virtual Serial Port Tools Documentation

Virtual Serial Port Tools Documentation Table of Contents

9

Virtual Serial Port Tools Documentation
Virtual Serial Port Tools (VSPT) is the ultimate virtual serial ports creation and management application. It
is capable of creating software-only virtual serial port devices and then using them to form advanced
device configurations. It also allows sharing of local serial ports (physical, PnP or virtual) over the
network over TCP/IP.

It builds upon a versatile high-performance virtual serial port driver, created by HHD Software Ltd. The
driver operates exclusively in user-mode, raising the overall OS stability. The functionality of the driver
may also directly be used by user code, allowing creation of custom virtual serial ports solutions. This is
as simple as writing a small portion of TypeScript or JavaScript code that utilizes a simple yet very
powerful Device Script API.

Below is a list of essential features provided by the toolkit:

Virtual Bridges

VSPT supports creation of either local or remote virtual bridges.

A virtual bridge is a pair of virtual serial port devices interconnected by means of a virtual null-modem
cable. Virtual Serial Port Tools supports full emulation of serial port baud rate, line control parameters,
flow control, buffer overflow and even allows setting specific level of noise emulation.

NOTE
Bridge always connects two virtual ports, which either reside on a single computer (local bridges)
or two distinct computers (remote bridges).
To make an advanced configuration where a virtual port is connected to a real port, see one of the
next sections.

Use Create Local Bridge Window to create new local virtual serial bridge and Create Remote Bridge
Window to create new remote virtual bridge.

The following API methods can be used to configure local serial bridges:

ISerialPortLibrary.createBridgePort
IBridgePortDevice.bridgePort

The following API methods and properties can be used to configure remote virtual serial bridges:

ISerialPortLibrary.createBridgePort
IBridgePortDevice.bridgeServer
IBridgePortDevice.remoteLogin
IBridgePortDevice.remoteDomain
IBridgePortDevice.remotePassword
IBridgePortDevice.isLocal

Alias Ports

A virtual serial port may be created as an alias to another existing serial port.

For example, you can create a virtual COM2 port which will be an alias to an existing COM1 port. Any
application that successfully works with COM1 can be switched to work with COM2 without noticing any
differences.

Use Create Alias Port Window to create new alias serial port.

Virtual Serial Port Tools Documentation Virtual Serial Port Tools Documentation

10

file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-local-bridges.html
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-remote-bridges.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createBridgePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#bridgePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createBridgePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#bridgeServer
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#remoteLogin
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#remoteDomain
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#remotePassword
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#isLocal
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-alias-ports.html

The following API methods can be used to create and configure alias ports:

ISerialPortLibrary.createAliasPort
IAliasPortDevice.aliasPort

Shared Ports

It is well known that Windows operating system treats serial ports as exclusive devices, that is, it only
allows a single application to “open” a port and communicate with a device.

However, this “exclusiveness” is sometimes a stop factor that prevents a very convenient setup. For
example, you have a GPS Modem that constantly reports its location data to the serial port and you want
two applications, Application A and Application B to receive this data.

Since it is impossible to remove the exclusive state of an existing COM port, Virtual Serial Port Tools
solves this task by allowing you to create a new virtual serial port which shares any existing serial port to
any number of applications.

For example, say our GPS Modem is connected to COM1 . An invalid setup would be:

Application Port Result
Application A COM1 Success
Application B COM1 Fail

Now we create new virtual serial port COM2 and set it to share COM1 and the valid setup would be:

Application Port Result
Application A COM2 Success
Application B COM2 Success

Created virtual serial port “backs” any given existing serial device. Any application opening the shared
port continues to work exactly like it worked with original device. At the same time, there is no longer a
limit of a number of times a port may be opened by different or same applications.

Use Share Port Window to create and configure new shared virtual serial port.

The following API methods can be used to create and configure shared ports:

ISerialPortLibrary.createSharedPort
ISharedPortDevice.sharedPort

Split Ports

This type of serial port is similar to shared port described above, but also allows you to assign multiple
device names to a shared serial port. In fact, when you create a split port configuration, the following
happens under the hood:

First, a shared virtual serial device is created that provides shared access to a given serial device. Then a
number of alias ports are created for the shared serial device. Any number of applications (or the same
application multiple times) may open those alias ports, effectively accessing the same original serial
device.

Use Split Port Window to create and configure new split virtual serial port.

The following API methods can be used to create and configure shared ports:

ISerialPortLibrary.createSharedPort
ISerialPortLibrary.createAliasPort

Virtual Serial Port Tools Documentation Virtual Serial Port Tools Documentation

11

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createAliasPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ialiasportdevice.html#aliasPort
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-shared-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createSharedPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/isharedportdevice.html#sharedPort
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/split-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-split-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createSharedPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createAliasPort

ISharedPortDevice.sharedPort
IAliasPortDevice.aliasPort

TCP/IP Ports (RFC2217, RAW)

VSPT allows the user to create a virtual serial port whose traffic is redirected to a specified TCP endpoint
(host name/address and TCP port). The exchange protocol corresponds to RFC2217. A raw protocol is
also supported.

The following two modes are supported for created TCP/IP virtual serial ports:

Connecting (TCP/IP client)
The user provides a remote host name or address and TCP/IP port to connect to. When application
opens a virtual serial port, a TCP/IP connection is attempted to the specified endpoint. After
successful connection, communication continues according to selected protocol.

Listening (TCP/IP server)
The user provides a local address (or * for all local addresses) and local TCP/IP port. When
application opens a virtual serial port, a listening socket is created and driver waits for incoming
TCP/IP connection. After successful connection, communication continues according to selected
protocol.

Virtual Serial Port Tools also contains a TCP/IP Serial Ports Server component, which can be used to
share local serial ports over TCP/IP network. This component may also be separately installed or even
“copy-deployed” on a remote computer for simple port sharing scenarios.

Use Create TCP/IP Serial Port Window to create and configure new tcp serial port.

The following API methods can be used to create and configure TCP/IP ports:

ISerialPortLibrary.createTcpPort
ITcpPortDevice.remoteHost
ITcpPortDevice.remoteTcpPort
ITcpPortDevice.localAddress
ITcpPortDevice.localTcpPort
ITcpPortDevice.protocol
ITcpPortDevice.reconnectTimeout

Script Ports

“Script ports” is the exclusive and powerful feature, only offered by the Virtual Serial Port Tools. Virtual
script port is a port that is “powered” by a custom device script, written in TypeScript or JavaScript
programming language.

A device script implements a virtual serial device, uncovering a tremendously wide list of capabilities and
fast turn-around times for any custom serial port scenario, including creation of all kinds of device
emulators, local and network communication channels and a lot, lot more.

Simple yet powerful and fully asynchronous Device Script API allows the device script to access the local
file system, establish network connections and send HTTP requests.

Remote Ports

VSPT allows you to directly connect to any serial port that physically exists on another computer. This is
done by means of creating a new local virtual serial port and directing it to a port shared by Remote
Serial Ports Server component. This component may also be separately installed or even “copy-
deployed” on a remote computer for simple port sharing scenarios.

Virtual Serial Port Tools Documentation Virtual Serial Port Tools Documentation

12

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/isharedportdevice.html#sharedPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ialiasportdevice.html#aliasPort
https://datatracker.ietf.org/doc/html/rfc2217
file:///C:/Users/alexb/AppData/Local/Temp/sharing-com-ports-over-network/tcp-serial-ports-server/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-tcp-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createTcpPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#remoteHost
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#remoteTcpPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#localAddress
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#localTcpPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#protocol
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#reconnectTimeout
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/sharing-com-ports-over-network/remote-serial-ports-server/overview.html

Use Connect Remote Port Window to create and configure new remote virtual serial port.

The following API methods can be used to create and configure shared ports:

ISerialPortLibrary.createRemotePort
IRemotePortDevice.remoteHost
IRemotePortDevice.remotePort
IRemotePortDevice.login
IRemotePortDevice.password
IRemotePortDevice.domain

Pipe-connected Port

A new virtual serial port may be connected to a named pipe. This configuration mainly exists to simplify
connection with virtual ports created by VM software in running guests.

Use Create New Pipe Port Window to create new pipe-connected port.

The following API functions can be used to create pipe-connected ports:

ISerialPortLibrary.createPipePort
IPipePortDevice.configureCreatePipe
IPipePortDevice.configureCreatePipe2
IPipePortDevice.configureConnectPipe

Listening Port

Finally, the last supported type of virtual serial port forms a “server”, listening part of a remote bridge.

A listening port first needs to be created on one computer and then remote bridge is created on another
computer, connecting to this listening port.

Use Create Listening Port Window to create new listening port.

The following API functions can be used to create listening ports:

ISerialPortLibrary.createBridgePort
IBridgePortDevice.isListening
IBridgePortDevice.securityDescriptor
IBridgePortDevice.startListening

Virtual Serial Port Tools Documentation Virtual Serial Port Tools Documentation

13

file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/connect-remote-port.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createRemotePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#remoteHost
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#remotePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#login
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#password
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#domain
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-pipe-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createPipePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ipipeportdevice.html#configureCreatePipe
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ipipeportdevice.html#configureCreatePipe2
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ipipeportdevice.html#configureConnectPipe
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-listening-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-listening-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createBridgePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#isListening
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#securityDescriptor
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#startListening

Supported Configurations
Virtual Bridges
Local Bridge

Virtual Serial Port Tools allows connecting two virtual serial devices to each other, forming a virtual
bridge.

Connection

To create a virtual bridge or virtual null modem link, first create two bridge devices by calling
ISerialPortLibrary.createBridgePort method twice and then connect them into the bridge by settings
each device's IBridgePortDevice.bridgePort property to reference each other.

Operation

When an application writes data to the first serial port, all written data is transferred to the second port
and vice versa. Bridge provides flow control and baud rate emulation as well as supports wait masks.

Configuration Utility

Configuration Utility allows the user to create local bridges, both non-permanent and permanent, using
the Create Local Bridge Window.

Custom Pin-Out

Virtual Serial Port Tools supports custom pin-out configuration for local and remote bridges. See the
corresponding topic for more details.

Remote Bridge

Two virtual serial ports, created on two computers may be joined together, forming a virtual remote
bridge. Users may control who can access the created listening port (server-side) and supply credentials
for a client-side port.

Connection

On a server side, a listening port must be created by calling a ISerialPortLibrary.createBridgePort method
and then calling IBridgePortDevice.startListening method on a returned object.

On a client side, a new bridge port device must be created using ISerialPortLibrary.createBridgePort
method and then configured by setting the following properties:

IBridgePortDevice.bridgeServer - to set the name or address of the remote host
IBridgePortDevice.bridgePort - to set the number of a listening port on a remote host
IBridgePortDevice.remoteLogin - optional user name or login to authenticate on a remote host
IBridgePortDevice.remoteDomain - optional domain name to authenticate on a remote host
IBridgePortDevice.remotePassword - optional password to authenticate on a remote host

Operation

Virtual Serial Port Tools Documentation Supported Configurations

14

file:///C:/Users/alexb/AppData/Local/configuration-utility/creating-local-bridges.html
file:///C:/Users/alexb/AppData/Local/configuration-utility/creating-listening-ports.html
file:///C:/Users/alexb/AppData/Local/vspt-api/iserialportlibrary.html#createBridgePort
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#startListening
file:///C:/Users/alexb/AppData/Local/vspt-api/iserialportlibrary.html#createBridgePort
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#bridgeServer
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#bridgePort
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#remoteLogin
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#remoteDomain
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#remotePassword

When an application writes data to the first serial port, all written data is transferred to the second port
and vice versa. Bridge provides flow control and baud rate emulation as well as supports wait masks.

Configuration Utility

Configuration Utility allows the user to create remote bridges, both non-permanent and permanent,
using the Create Remote Bridge Window and Create Listening Port Window.

Custom Pin-Out

Virtual Serial Port Tools supports custom pin-out configuration for local and remote bridges. See the
corresponding topic for more details.

Bridge Pin-Outs

Virtual bridges created by Virtual Serial Port Tools (both local and remote) support custom “wiring”
inside a virtual “cable”. You may specify which pins are sending data to which other pins, both on local or
remote socket. Below is a default configuration used:

Configuring Pin-Outs

If you are using the Configuration Utility, use Create Local Bridge Window or Create Remote Bridge
Window to configure custom wiring.

Local and remote bridge pin-out is configured by settings values of the following properties:
IBridgePortDevice.DTR, IBridgePortDevice.DSR, IBridgePortDevice.DCD, IBridgePortDevice.RTS,
IBridgePortDevice.CTS and IBridgePortDevice.RI.

Validation

Virtual Serial Port Tools automatically validates the applied configuration and if it is invalid, you get an
error from API.

Below is a table that shows you valid configuration for each pin:

Virtual Serial Port Tools Documentation Supported Configurations

15

file:///C:/Users/alexb/AppData/Local/configuration-utility/creating-remote-bridges.html
file:///C:/Users/alexb/AppData/Local/configuration-utility/creating-listening-ports.html
file:///C:/Users/alexb/AppData/Local/configuration-utility/overview.html
file:///C:/Users/alexb/AppData/Local/configuration-utility/creating-local-bridges.html
file:///C:/Users/alexb/AppData/Local/configuration-utility/creating-remote-bridges.html
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#DTR
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#DSR
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#DCD
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#RTS
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#CTS
file:///C:/Users/alexb/AppData/Local/vspt-api/ibridgeportdevice.html#RI

Source Pin Allowed Destinations
DTR (Data Terminal Ready) DSR, DCD, CTS, RI
DSR (Data Set Ready) DTR, RTS
DCD (Data Carrier Detect) DTR, RTS
RTS (Request To Send) DSR, DCD, CTS, RI
CTS (Clear To Send) DTR, RTS
RI (Ring) RI
RxD (Received Data) None
TxD (Transmitted Data) RxD (only remote)

In all cases (except TxD) if connection is allowed, it can be established both to the local or remote socket,
effectively allowing the user to create loops.

Alias Ports
A virtual serial port may be created as an alias of another existing serial port.

Connection

To create an alias or mapped port, first call the ISerialPortLibrary.createAliasPort method and then
specify the port parameters using the IAliasPortDevice.aliasPort property.

Additional port options can be set using IConfigurableDevice.baudRate, IConfigurableDevice.dataBits,
IConfigurableDevice.parity, IConfigurableDevice.stopBits and IConfigurableDevice.flowControl
properties. These properties allow you to override port parameters.

Operation

Created virtual serial ports acts as an alias to existing serial port for the calling application, providing full
emulation of all serial port features supported by original device.

If there are parameter overrides configured for a port, they will silently be used instead of the
configuration specified by the application.

A single port may have as many aliases as you need.

Configuration Utility

Configuration Utility allows the user to create and configure alias ports using the Create Alias Port
Window.

Shared Ports
Virtual Serial Port Tools supports creation of virtual serial devices that “share” an existing serial device,
allowing any number of applications to work with the original serial device.

Connection

To create a shared port, first call the ISerialPortLibrary.createSharedPort method and then configure it
using the ISharedPortDevice.sharedPort property.

Additional port options can be set using IConfigurableDevice.baudRate, IConfigurableDevice.dataBits,

Virtual Serial Port Tools Documentation Supported Configurations

16

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createAliasPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ialiasportdevice.html#aliasPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#baudRate
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#dataBits
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#parity
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#stopBits
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#flowControl
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-alias-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createSharedPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/isharedportdevice.html#sharedPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#baudRate
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#dataBits

IConfigurableDevice.parity, IConfigurableDevice.stopBits and IConfigurableDevice.flowControl
properties. These properties allow you to override port parameters.

Operation

Shared virtual serial port is created as non-exclusive device and allows itself to be opened by any
number of applications. Actual data and control codes are redirected to original serial device.

The first application that opens a port is assigned as “master” application. Only master application is
allowed to set several important port parameters, such as baud rate, line parameters and flow control
settings. All attempts to modify these settings by other opening applications are silently discarded.

Other port parameters, like wait masks, timeouts and others are per-application and may be different.
When all handles to the shared device are closed, the next application that opens a serial device is again
assigned as “master” application.

If there are parameter overrides configured for a port, they will silently be used instead of the
configuration specified by the application.

It is not supported to create several shared ports for the same original port. Configuration utility
explicitly prohibits it, but API does not. If you still create several shared port devices for the same original
device, only one of them will work at a time.

Configuration Utility

Configuration Utility allows the user to create and configure shared ports using the Share Port Window.

Split Ports
Split ports are not directly supported by Virtual Serial Port Tools. Instead, the configuration of a split port
is achieved by means of first creating a shared port and then creating a number of aliases for the shared
port.

Connection

First, create a shared port using the ISerialPortLibrary.createSharedPort and configure it using the
ISharedPortDevice.sharedPort property.

Then create a required number of port aliases using ISerialPortLibrary.createAliasPort and point them to
created shared port using the IAliasPortDevice.aliasPort property.

Operation

The split ports configuration operates exactly like the shared ports configuration. It can be used, for
example, if an original device needs to be opened multiple times by a single application. Although a
single shared port may be opened multiple times by a single application, applications are often designed
in such a way to prevent the same port from appearing in user interface twice.

Split port configuration may be used in this scenario.

If there are parameter overrides configured for a port, they will silently be used instead of the
configuration specified by the application.

Configuration Utility

Configuration Utility allows the user to create and configure split port configurations using the Split Port
Window.

Virtual Serial Port Tools Documentation Supported Configurations

17

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#parity
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#stopBits
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#flowControl
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-shared-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createSharedPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/isharedportdevice.html#sharedPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createAliasPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ialiasportdevice.html#aliasPort
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/shared-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-split-ports.html

TCP/IP Ports
Virtual Serial Port Tools allows you to create virtual serial port device that redirects all traffic to a
specified TCP endpoint, according to RFC2217 protocol (Telnet COM Port Control Option) as well as raw
protocol. It also supports creating virtual serial devices that create a listening TCP/IP socket, bind it to a
local address and local TCP/IP port and listen for incoming network connections.

HHD Software Ltd. also provides an implementation of TCP/IP Serial Ports Server, which is an optional
component that can be installed on a remote computer to share its serial ports over the TCP/IP network.

Connection

To create a TCP port, first call the ISerialPortLibrary.createTcpPort method and then specify the port
parameters.

To create a connecting port, specify remote host/address and TCP port using the
ITcpPortDevice.remoteHost and ITcpPortDevice.remoteTcpPort properties. Non-default
reconnection timeout value may be set using the ITcpPortDevice.reconnectTimeout property.
To create a listening port, specify local address and local port using the ITcpPortDevice.localAddress
and ITcpPortDevice.localTcpPort properties.

Set the virtual serial port protocol using the ITcpPortDevice.protocol property. Currently, RFC2217 and
raw protocols are supported.

Additional port options can be set using IConfigurableDevice.baudRate, IConfigurableDevice.dataBits,
IConfigurableDevice.parity, IConfigurableDevice.stopBits and IConfigurableDevice.flowControl
properties. These properties allow you to override port parameters.

Operation

Created virtual serial ports acts like the standard serial port for the calling application, providing full
emulation of all serial port features supported by original device. Data protocol corresponds to RFC2217
or RAW, depending on the value of the ITcpPortDevice.protocol property.

For connecting ports, actual network connection is attempted at the time application opens the virtual
serial port. If connection to remote server fails for any reason, the error code is propagated to the calling
application.

For listening ports, a listening socket is created as soon as application opens the virtual serial port. As
soon as remote party connects, the serial port communication is started.

Configuration Utility

Configuration Utility allows the user to create TCP ports and specify remote TCP endpoint using the
Create TCP/IP Serial Port Window.

Remote Ports
Virtual Serial Port Tools allows you to directly connect to any serial port that physically exists on another
computer. This is done by means of creating a new local virtual serial port and directing it to a port
shared by Remote Serial Ports Server application running on a remote computer.

Connection

Virtual Serial Port Tools Documentation Supported Configurations

18

file:///C:/Users/alexb/AppData/Local/Temp/sharing-com-ports-over-network/tcp-serial-ports-server/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createTcpPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#remoteHost
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#remoteTcpPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#reconnectTimeout
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#localAddress
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#localTcpPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#protocol
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#baudRate
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#dataBits
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#parity
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#stopBits
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iconfigurabledevice.html#flowControl
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/itcpportdevice.html#protocol
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-tcp-ports.html
https://hhdsoftware.com/remote-serial-ports-server

To create a remote port, first call the ISerialPortLibrary.createRemotePort method and then specify the
port parameters using the IRemotePortDevice.remoteHost, IRemotePortDevice.remotePort,
IRemotePortDevice.login, IRemotePortDevice.password, IRemotePortDevice.domain properties as well as
optional IRemotePortDevice.connectionTimeout and IRemotePortDevice.connectionAttempts properties.

Operation

Created virtual serial ports acts like the original remote port for the calling application, providing full
emulation of all serial port features supported by original device.

User credentials are required at the time of port creation. They are stored securely and used each time
the port is opened by the application. A system administrator of the remote computer may assign which
users are granted access to shared ports.

Actual connection is made at the time application opens the virtual serial port. If connection to remote
server fails for any reason, the error code is propagated to the calling application.

Configuration Utility

Configuration Utility allows the user to create remote ports and specify remote endpoint and user
credentials using the Connect Remote Port Window.

Script Ports
Virtual Script Port is the unique and powerful capability offered by Virtual Serial Port Tools. It allows the
user to create a virtual serial port, “backed up” by a custom script, written in TypeScript or JavaScript.

Overview

A script that implements a virtual serial device logic (called device script further in this document) must
be written in TypeScript or JavaScript (ES6) and must define a class that implements the IScriptDevice
interface and define a createDevice or createDeviceAsync global function. This global function is called
each time a virtual script port is opened by an application. This function must create an instance of the
port class and return a reference to it.

Device creation function is allowed to perform some initialization and is passed an optional initialization
value string. If it needs to perform an asynchronous initialization, use createDeviceAsync function,
otherwise, use createDevice function.

VSPT API ISerialPortLibrary.createScriptPort method is used to create a virtual serial script port. Set an
optional script initialization parameter using the IScriptPortDevice.initializationValue. Change the default
script execution logging folder by setting the IScriptPortDevice.logPath property.

Once you have your port script ready, set it by calling IScriptPortDevice.setScriptFile or
IScriptPortDevice.setScriptText method.

NOTE
The library compiles and validates the script and stores it internally. If setScriptFile method is
successful, the original script file will never be read again.
This is done for security reasons: by storing the script internally, VSPT protects the created virtual
script port from unwanted script updates.
If you make changes to a script file and want those changes applied, call setScriptFile method
again.

Virtual Serial Port Tools Documentation Supported Configurations

19

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createRemotePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#remoteHost
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#remotePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#login
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#password
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#domain
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#connectionTimeout
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iremoteportdevice.html#connectionAttempts
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/connect-remote-port.html
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iscriptdevice.html
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/iglobals.html#createDevice
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/iglobals.html#createDeviceAsync
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createScriptPort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#initializationValue
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#logPath
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#setScriptFile
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#setScriptText

If this method returns false , observe the IScriptPortDevice.validationErrors property to get a list of
validation errors. This method may also throw an exception which usually means that while there were
no syntax errors in a script, it still failed additional validation, like missing createDevice or
createDeviceAsync global functions.

Script Structure

Below is the minimal device script:

///<reference path="hhdscriptport.d.ts" />

class MyDevice implements Port.IScriptDevice { // 1
 // The following method is optional, see below
 public async onSend(data: Uint8Array): Promise<void> { // 2
 // ...
 }

 // The following method is optional, see below
 public setParam(name: string, value: string): void { // 3
 // ...
 }
}

// Either createDevice or createDeviceAsync global functions must be defined. If both are
defined, createDeviceAsync will be used
async function createDeviceAsync(initializationValue?: string): Promise<Port.IScriptDevice> { //
4
 return new MyDevice;
}

// Either createDevice or createDeviceAsync global functions must be defined. If both are
defined, createDeviceAsync will be used
function createDevice(initializationValue?: string): Port.IScriptDevice { // 5
 return new MyDevice;
}

The following list describes the numbered elements in the sample above:

1. Script logic must be incorporated into a class which implements a Port.IScriptDevice interface.

2. An optional IScriptDevice.onSend method is used in the push model.

3. An optional IScriptDevice.setParam method, if present, allows the external code to send arbitrary
data to the script, either by calling IScriptPortDevice.setScriptParam method or by sending a custom
IOCTL_SCRIPTPORT_SET_PARAM device I/O request to the opened port.

4. createDeviceAsync global function, if present, will be called each time the virtual script port is
opened. It is passed a copy of the IScriptPortDevice.initializationValue. This function must create an
instance of a device class and return it.

At least one of createDeviceAsync or createDevice global functions must be defined, otherwise, a
validation error occurs. If both functions are defined, only createDeviceAsync will be used.

5. createDevice global function, if present, will be called each time the virtual script port is opened. It
is passed a copy of the IScriptPortDevice.initializationValue. This function must create an instance of
a device class and return it.

At least one of createDeviceAsync or createDevice global functions must be defined, otherwise, a
validation error occurs. If both functions are defined, only createDeviceAsync will be used.

NOTE
This script execution context is created after the port is opened and is destroyed as soon as it is
closed. Any global variables you create will only live this long.

Virtual Serial Port Tools Documentation Supported Configurations

20

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#validationErrors
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iscriptdevice.html
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iscriptdevice.html#onSend
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iscriptdevice.html#setParam
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#setScriptParam
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/ioctl_scriptport_set_param.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#initializationValue
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#initializationValue

That is, you cannot store any state between port opening attempts. However, the execution context
is guaranteed to exist until the port is closed by the application. Anyway, prefer storing any state in
the created device script object, not on a global scope.

Send Data Model

Device script can use one of the following data flow models:

Push Model
In this model Virtual Script Port proactively sends all the data sent to the port to device script's
onSend method.

Pull Model
In this model, device script queries (pulls) for the sent data.

The virtual serial port driver chooses the model by determining the presence of the IScriptDevice.onSend
method in the device script. The sections below provide detailed explanation on flow models:

Push Model

Whenever an application sends any data to the virtual serial port, device script's IScriptDevice.onSend
method is called with a copy of data sent. onSend method returns a promise. Once this promise is
resolved, virtual serial port immediately discards sent data and completes the original application's Write
request.

Loopback Serial Port (Push Model).ts sample script, included in the default product installation,
illustrates the usage of a push model:

///<reference path="hhdscriptport.d.ts" />
/**
 * This script implements a simple "loopback" virtual serial device
 * It immediately returns everything that has been sent to it
 *
 * This version illustrates the usage of so-called "push" model
 * In this mode, virtual serial port driver calls an onSend method with data sent by application
to a serial port
 */
class LoopbackSerialDevicePush implements Port.IScriptDevice {
 public async onSend(data: Uint8Array): Promise<void> {
 // This script emulates an echo device, we simply provide the same data back
 port.provideReceivedData(data);
 }
}

function createDevice(): Port.IScriptDevice {
 return new LoopbackSerialDevicePush;
}

Pull Model

Whenever an application sends any data to the virtual serial port, it is put into the internal output queue.
Application's Write request is completed immediately. At any time, a device script may query for the
whole or part of the output queue by calling the IPort.getSentData method. This method returns a
promise that is resolved with a copy of the output queue, or a part of it.

Loopback Serial Port (Pull Model).ts sample script, included in the default product installation,
illustrates the usage of a pull model:

Virtual Serial Port Tools Documentation Supported Configurations

21

file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iscriptdevice.html#onSend
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iscriptdevice.html#onSend
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iport.html#getSentData

///<reference path="hhdscriptport.d.ts" />
/**
 * This script implements a simple "loopback" virtual serial device
 * It immediately returns everything that has been sent to it
 *
 * This version illustrates the usage of so-called "pull" model
 * In this mode, a port implementation calls the virtual serial port driver's getSentData
function that returns a Promise.
 * This promise is resolved with a byte array sent by application to a serial port
 */
class LoopbackSerialDevicePull implements Port.IScriptDevice {
 constructor() {
 this.run();
 }
 async run() {
 while (true) {
 var sentData = await port.getSentData();
 port.provideReceivedData(sentData);
 }
 }
}

function createDevice(): Port.IScriptDevice {
 return new LoopbackSerialDevicePull;
}

Receiving Data

Data model only governs the processing of the data sent by an application to a port. Whenever the
device script needs to emulate received data, it calls the IPort.provideReceivedData method with the
data it wants to make available for application. Next time application attempts to read from the serial
port it gets a copy of those data.

Device Script API

Virtual script port provides the following functionality to the device script:

Port API
Provided by means of a global object port which implements the IPort interface. It represents the
virtual serial port itself and provides methods for reading and writing data.

File System
Provided by means of a global object fs which implements the FS.IFileManager interface. It allows
the device script to create and delete folders and files, open files for reading and writing and read
and write data from them. Device script may also enumerate the contents of any folder.

Sockets
Provided by means of a global object net which implements the Net.INetworkManager interface. It
allows the device script to create TCP and UDP sockets and use them to perform network
communication.

HTTP
Provided by means of a global object http which implements the Http.IHttpClient interface. It
allows the device script to send all kinds of HTTP requests.

Script Debugging

Device script runs in a controlled and secure environment. Therefore, external access to a running script
is limited. The only debugging facility available for a device script is a global log method.

By default, all log files are created in a %TEMP%\vspt_script_logs folder. Note that %TEMP% environment
variable is expanded under the context of a System account and is usually resolved into
c:\Windows\TEMP . Log file folder location may also be changed by setting the IScriptPortDevice.logPath

Virtual Serial Port Tools Documentation Supported Configurations

22

file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iport.html#provideReceivedData
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iport.html
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/file-system-api/ifilemanager.html
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/network-api/inetworkmanager.html
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/http-api/ihttpclient.html
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/iglobals.html#log
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#logPath

property.

A log file is only created if a device script makes a call to a log method, or throws an unhandled
exception. The log file name follows this scheme:

vspt.YYYY-MM-dd.hh-mm-ss.PID.log

Abbr Description
YYYY Year
MM Month
dd Day
hh Hour in 24-hours format
mm Minutes
ss Seconds
PID Process ID of a port opening process

Pipe Ports
Virtual Serial Port Tools allows connecting a virtual serial device to the named pipe. A serial device may
either play the role of the named pipe server or named pipe client.

When acting as named pipe client, the other end of the pipe may reside either on the local or remote
computer.

Connection

To connect a virtual serial device to the named pipe, create new virtual serial port with a call to
ISerialPortLibrary.createPipePort method and use the IPipePortDevice.configureConnectPipe method to
connect to an existing pipe (client mode) or IPipePortDevice.configureCreatePipe2 method to create a
named pipe and connect to it in server mode.

The actual pipe creation or connection occurs only when a client application opens a handle to a virtual
serial pipe.

Operation

When an application writes data to the serial port, all written data is transferred to the named pipe.
Correspondingly, when application reads data from the port, the data is fetched from the named pipe.

Configuration Utility

Configuration Utility allows the user to create ports connected to pipes using the Create New Pipe Port
Window.

Listening Ports
Listening port is a “server” side of a remote bridge. When you create a new remote bridge, a name of the
remote listening virtual serial port needs to be specified.

Creation

To create new listening port, first create new virtual serial device using the

Virtual Serial Port Tools Documentation Supported Configurations

23

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createPipePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ipipeportdevice.html#configureConnectPipe
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ipipeportdevice.html#configureCreatePipe2
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-pipe-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/virtual-bridges/remote-bridge.html

ISerialPortLibrary.createBridgePort method and then call its IBridgePortDevice.startListening method.

Operation

The listening port is initially disconnected, but it is ready to accept incoming connections to form a
remote bridge. After connection, it becomes a remote bridge on the remote computer.

Configuration Utility

Configuration Utility allows the user to create listening ports using the Create Listening Port Window.

Virtual Serial Port Tools Documentation Supported Configurations

24

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#createBridgePort
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/ibridgeportdevice.html#startListening
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/virtual-bridges/remote-bridge.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/virtual-bridges/remote-bridge.html
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-listening-ports.html

Sharing COM Ports over Network
Virtual Serial Port Tools includes two optional server components. They may be installed either among
with other components or as stand-alone components. Both server components can be configured to
run as Windows Services, or as stand-alone applications.

Remote Serial Ports Server

This component shares local COM ports over the network. It is best suited for local-area networks or
domain networks. It provides the following features:

Automatic advertising of shared COM ports.
Fine-grained access control allows administrators to configure which users and groups have access
to shared COM ports.
Full emulation of underlying COM port is provided.
Remote Ports are used on the “client” side to connect to shared serial ports.

The following topics provide more information on Remote Serial Ports Server component:

Remote Serial Ports Server
Server Configuration Utility
Server Command-Line Parameters

TCP/IP Serial Ports Server

This component shares local COM ports over the TCP/IP network. It provides the following features:

Support for RFC2217 standard serial port protocol.
Support for RAW serial port protocol.
Default port configuration parameters may be specified. They will be used if not overridden by
applications.
Full emulation of underlying COM port is provided.
TCP/IP Ports are used on the “client” side to connect to shared serial ports.

The following topics provide more information on Remote Serial Ports Server component:

TCP/IP Serial Ports Server
TCP/IP Server Configuration Utility
TCP/IP Server Command-Line Parameters

Remote Serial Ports Server
Remote Serial Ports Server is an optional component of Virtual Serial Port Tools. It should be installed on
a computer which serial ports you want to share over the network. It can be installed either with other
VSPT components or as a standalone component. By default, server is installed as Windows Service and
runs even without a logged-on user. In addition, the server may be launched on-demand, providing a
quick way to share serial devices.

Server component is used to provide remote access to all local serial devices, including legacy serial
ports, virtual serial ports or “serial over USB” devices. The server can be used in one of the following
modes: installed as Windows Service or running as a stand-alone process.

By default, all local serial devices are shared across the network and all users are granted access. In
addition, the server automatically advertises itself on the local network.

All these defaults may be changed using either the command-line parameters if the server is running
stand-alone mode or using the Server Configuration Utility if the server is installed as Windows Service.
See below for more information.

Virtual Serial Port Tools Documentation Sharing COM Ports over Network

25

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/remote-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/remote-serial-ports-server/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/remote-serial-ports-server/server-configuration-utility.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/remote-serial-ports-server/command-line-parameters.html
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/tcp-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/tcp-serial-ports-server/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/tcp-serial-ports-server/server-configuration-utility.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/tcp-serial-ports-server/command-line-parameters.html

Windows Service Mode

In this mode, server is installed as Windows Service and is configured to run without logged-on user.
This is the default mode, configured by server installation utility. Server options are controlled with a
help of Server Configuration Utility.

If the user needs to manually configure Remote Serial Ports Server to Windows Service mode, the
following command-line parameter may be used:

Command Prompt
ps_server.exe -install-service

To remove Windows Service, use the following command-line parameter:

Command Prompt
ps_server.exe -uninstall-service

NOTE
Since installing or removing a Windows Service is a privileged operation, these command-lines
must be executed from the elevated command-prompt.

Stand-alone Mode

Remote Serial Ports Server supports simple deployment for quick serial sharing experience. All you need
is to copy the ps_server.exe file to the target computer and launch it, optionally providing command-
line parameters for fine-grain control. See the Server Command-Line Parameters section for more
information.

Server Configuration Utility

Configuration utility (an optional component installed by Remote Serial Ports Server installation
package) provides a way to configure Remote Serial Ports Server, running in Windows Service mode.

It may also be used to configure server running in stand-alone mode, however, the preferred way is to
use command-line parameters.

Virtual Serial Port Tools Documentation Sharing COM Ports over Network

26

At the top of the window you can see the current status of Windows Service. Use the Start and Stop
buttons to control the service. If configuration utility is used to configure server running in stand-alone
mode, these buttons are disabled.

Next, there's an option to select which ports are shared by the server. Default setting is to share all ports.

Check the “Enable auto-discovery” option to specify whether the server automatically advertises itself on
the local network.

Pressing the Security… button brings up the Security window where you can configure which users and
groups are granted access to shared serial ports. By default, all users are granted access.

When new settings are applied, server automatically restarts, loading new settings. All existing
connections are kept.

Command-Line Parameters

When Remote Serial Ports Server is running as stand-alone process, use command-line parameters to
configure its options. The server supports the following options:

Virtual Serial Port Tools Documentation Sharing COM Ports over Network

27

Option Argument Description
-? , --help Display command-line parameters.
--nologo Do not display logo message.
Server options
--security-descriptor SDDL Security descriptor in SDDL format
--share-ports N1[,N2[,N3...]] Only share specified ports.
--no-discovery Turn automatic discovery off.
Logging options
--log-path path Write server log to the specified file.
--log-level LOGGING-LEVEL

Set logging level to one of the
following:

critical
only critical errors

error
all errors

warnings
errors and warnings

info
informational messages

debug
maximum information for
debugging

--no-screen-log Do not display a copy of log to the
console.

Service operations
-install-service , --install-service Install service. Must be called from

elevated command-prompt.
-uninstall-service ,
--uninstall-service

Uninstall service. Must be called from
elevated command-prompt.

TCP Serial Ports Server
TCP/IP Serial Ports Server is an optional component of Virtual Serial Port Tools. It needs to be installed
on a computer which serial ports you want to expose on given TCP endpoints to be used by other
computers on the network. By default, server is installed as Windows Service and runs even without a
logged-on user. In addition, the server may be launched on-demand, providing quick way to share serial
devices.

Server component is used to provide remote access to all local serial devices, including legacy serial
ports, virtual serial ports or “serial over USB” devices.

NOTE
Current version always uses all available network interfaces when it listens for incoming TCP
connections.

Virtual Serial Port Tools Documentation Sharing COM Ports over Network

28

The server can be used in one of the following modes: installed as Windows Service or running as stand-
alone process.

The server administrator has to explicitly specify which serial ports are shared on which TCP ports. When
TCP/IP Serial Ports Server executes as a stand-alone process, this configuration is done using the TCP/IP
Server Command-Line Parameters. When TCP/IP Serial Ports Server is running as Windows Service,
configuration is performed using the TCP/IP Server Configuration Utility.

Windows Service Mode

In this mode, server is installed as Windows Service and is configured to run without logged-on user.
This is the default mode, configured by server installation utility. Server options are controlled with a
help of TCP/IP Server Configuration Utility.

If the user needs to manually configure TCP/IP Serial Ports Server to Windows Service mode, the
following command-line parameter may be used:

Command Prompt
psip_server.exe -install-service

To remove Windows Service, use the following command-line parameter:

Command Prompt
psip_server.exe -uninstall-service

NOTE
Since installing or removing a Windows Service is a privileged operation, these command-lines
must be executed from the elevated command-prompt.

Stand-alone Mode

TCP/IP Serial Ports Server supports simple deployment for quick serial sharing experience. All you need is
to copy the psip_server.exe file to the target computer and launch it, providing command-line
parameters to specify what serial ports and their corresponding TCP ports. See the TCP/IP Server
Command-Line Parameters section for more information.

TCP/IP Server Configuration Utility

Configuration utility (an optional component installed by TCP/IP Serial Ports Server installation package)
provides a way to configure TCP/IP Serial Ports Server, running in Windows Service mode.

Virtual Serial Port Tools Documentation Sharing COM Ports over Network

29

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/command-line-parameters.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/server-configuration-utility.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/server-configuration-utility.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/command-line-parameters.html

At the top of the window you can see the current status of Windows Service. Use the Start and Stop
buttons to control the service.

Below is the list of currently shared ports. A single COM port may be shared over different TCP ports. In
this case, only single connection will succeed, effectively locking a serial port.

NOTE
Current version always uses all available network interfaces when it listens for incoming TCP
connections.

To share new serial port, press the Share New Port… button, select the COM port to share, enter TCP
port number and choose the protocol.

To remove a share, select it in the list and press the Stop Sharing button. To remove all shared ports,
press the Remove All button.

Press the Apply button to apply the changes. This will restart the server, closing all existing connections.
Pressing OK button applies current settings and closes the application.

Virtual Serial Port Tools Documentation Sharing COM Ports over Network

30

Command-Line Parameters

When TCP/IP Serial Ports Server is running as stand-alone process, use command-line parameters to
configure its options. The server supports the following options:

Command Prompt
psip_server.exe [OPTIONS] <SHARED-PORTS>

Where <SHARED-PORTS> is encoded according to basic or advanced syntax:

Basic Syntax

Command Prompt
COMn1=TCP-PORT[,protocol] [COMn2=TCP-PORT[,protocol]]...

COMn=<port>[,protocol] arguments are mandatory. They specify which serial ports are shared over which
TCP ports. protocol , if specified, must be either rfc2217 or raw . If protocol is omitted, rfc2217 is
assumed.

Example:

Command Prompt
psip_server.exe COM5=11111 COM6=22222,raw

Advanced Syntax

Command Prompt
com=n,tcp=n[,comma-separated optional arguments]

Supported optional arguments:

Argument format Description
baud=n Override baud rate
bits=n Override byte size
stop=1|1.5|2 Override stop bits
parity=no|odd|even|mark|space Override parity
flow=no|software|hardware Override flow control
protocol=rfc2217|raw Override protocol
bufferSize=n Set TCP buffer size, in bytes (default 512KB,

allowed range 4KB..10MB)

Example:

Command Prompt
psip_server.exe com=5,tcp=11111 com=6,tcp=22222,protocol=row,bufferSize=65536

Options

Virtual Serial Port Tools Documentation Sharing COM Ports over Network

31

Option Argument Description
-? , --help Display command-line parameters.
--nologo Do not display logo message.

Logging options
--log-path <path> Write server log to the specified file.
--log-level LOGGING-LEVEL

Set logging level to one of the following:

critical
only critical errors

error
all errors

warnings
errors and warnings

info
informational messages

debug
maximum information for debugging

--no-screen-log Do not display a copy of log to the console.
Service operations
-install-service ,
--install-service

Install service. Must be called from elevated
command-prompt.

-uninstall-service ,
--uninstall-service

Uninstall service. Must be called from
elevated command-prompt.

License Installation
--license <path> Install the license from the given license file

Virtual Serial Port Tools Documentation Sharing COM Ports over Network

32

Configuration Utility
This application provides a graphical user interface to create and manage virtual serial devices and their
configurations. It uses API provided by Virtual Serial Port Tools COM server.

Each supported device type is represented with a rich icon that describes the configuration this particular
device type solves. Clicking on the icon opens the configuration window of a selected device type.

When at least one device of a given type is created, the icon is replaced with a device list:

Three buttons are: Create, Export Configuration and Delete. Pressing the first button
opens the configuration window of a selected device type, pressing the second button opens the
Exporting Configuration window and pressing the last button deletes the selected device.

Create Local Serial Bridges
This window allows you to create a new local virtual serial bridge:

Virtual Serial Port Tools Documentation Configuration Utility

33

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/exporting-configuration.html

Here you configure port names of the first and second ports.

Bridge Creation Options

See the Bridge Creation Options topic for more information on customizing local bridge configuration.

Create Remote Serial Bridges
This wizard allows you to create new virtual serial device and connect it to remote virtual serial device,
thus forming a virtual remote bridge.

First, you need to select the name of the local port. Then, enter (or browse for) the name of the remote
server and enter the name of the listening port on that server.

Bridge Creation Options

See the Bridge Creation Options topic for more information on customizing remote bridge
configuration.

Bridge Creation Options
Bridge Options window allows you to enable baud rate emulation, overflow emulation, line noise
emulation and custom pin-out.

Virtual Serial Port Tools Documentation Configuration Utility

34

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/bridge-creation-options.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/creating-listening-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/bridge-creation-options.html

By default, virtual serial bridge does not emulate baud rate. This behavior may be controlled by the
Emulate baud rate setting.

By default, virtual serial bridge does not emulate overflow of transmit buffer. This behavior may be
controlled by the Emulate TX Queue Overflow setting.

If you want to emulate line noise, check the “Emulate line noise” option and enter the single bit
crossover probability (AKA BSCp), that is, a probability of flipping a single bit. Acceptable range is from
0.01% to 50.00%.

Pin-Out Configuration

If you need to apply a non-standard “wiring” configuration to the created bridge, expand the Bridge
Configuration box. Then either select one of predefined or previously saved schemes using the Pinout
scheme drop-down box, or use Drag&Drop to add new connections.

Click on one of the pins to see more information.

Selected pin has the brown color. Pins it may be connected to are drawn in green. Outgoing connections
are painted blue while incoming connections are painted green.

Creating New Connection

To create a new connection, either right-click the source pin and select the destination pin in a context
menu or left-click and drag to the destination pin.

Deleting Connection

To remove a connection, either right-click the source pin and select the destination pin to unplug in a
context menu; or left-click and drag to the destination pin to remove an existing connection.

Virtual Serial Port Tools Documentation Configuration Utility

35

Creating TCP Ports
This window allows you to create new virtual serial port and configure it.

Select the local port name you want to create or leave the default one. Select the protocol (currently,
RFC2217 and RAW protocols are supported).

Creating TCP/IP Ports in Connecting Mode

To create a virtual serial port that connects to remote TCP/IP endpoint when opened by application,
make sure the Connect to remote endpoint option is chosen. Then enter the remote host address or
name, specify remote TCP port number and reconnection timeout, used to restore connection if the
network connectivity error occurs during transmission.

Creating TCP/IP Ports in Listening Mode

To create a virtual serial prot that will start listening on a specified local TCP/IP endpoint, make sure the
Listen for incoming connections option is chosen. Then select which local address (or “All”) to use and
specify local TCP port number.

Make sure the Add Firewall exception option is checked to automatically add a Firewall exception rule
for incoming connection on specified port. This rule will automatically be removed if the virtual serial
port is deleted.

Press the Options… button to set Port Settings Overrides options.

Create Alias/Mapped Serial Ports
This window allows you to create a new alias port:

Virtual Serial Port Tools Documentation Configuration Utility

36

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-settings-overrides.html

First select the original device for which you want to create an alias and then set the created port name.
Optionally, specify the port settings overrides by pressing the Options button.

Create Shared Serial Ports
This window allows you to create a new shared port:

First select the original device which you want to share and then set the created port name. Optionally,
specify the port settings overrides by pressing the Options button.

Create Split Serial Ports
This window allows you to create a split port configuration:

Virtual Serial Port Tools Documentation Configuration Utility

37

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-settings-overrides.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-settings-overrides.html

First select the device you want to split. Then press the + button to add two or more aliases for the port
being split. You can also delete an added alias by selecting it in the list and pressing the - button.

Optionally, specify the port settings overrides by pressing the Options button.

Create Script Serial Ports
This window allows you to create a new script port:

Enter the full path to a device script or click the Browse button. If the script is one of the sample device
scripts installed by Virtual Serial Port Tools installer, its short description will be displayed in the device
creation window.

Optionally provide an initialization value and click the Create button.

The script file will be compiled and validated. If it passes the validation, a new virtual script device will be
created, otherwise, a list of validation errors is displayed.

Virtual Serial Port Tools Documentation Configuration Utility

38

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-settings-overrides.html
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/script-ports.html

NOTE
For security reasons, once validation is successful, VSPT will never read the script file again. If you
make changes to a device script file, make sure the script is updated, or virtual device is re-created
in order for changes to be applied.

Optionally, specify the port settings overrides by pressing the Options button.

Port Settings Overrides
The port settings override window allows you to set specific port parameter overrides to be applied for a
virtual port:

You can override the baud rate, line parameters, serial port timeouts and/or flow control settings.

Connect Remote Serial Port
This window allows you to create new virtual serial port that acts as a remote serial port.

Select the port in the server list. The server list is automatically populated with auto-discovered servers in
the local area network or domain network. You can also add new server manually by pressing the Add

Virtual Serial Port Tools Documentation Configuration Utility

39

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-settings-overrides.html

Server… button.

Below you can customize the created port name and enter the credentials to use for authentication on
the remote server. Entered credentials are stored securely in the protected location associated with
created serial device and are automatically persisted through system reboots.

NOTE
Although the actual connection (and authentication) occurs only when an application opens the
created virtual serial device, configuration utility attempts to validate entered credentials by
connecting to the remote computer. This attempt may fail or succeed using local user credentials
even if entered credentials are invalid.
However, when credentials are used later for actual connection, the process will execute under
Local System account and entered credentials may actually result in connection failure.
Make sure entered credentials are actually granted remote access to the specified server as well as
granted access to shared ports on that server.

Create Pipe-connected Serial Ports
This wizard allows you to create new virtual serial device and connect it to a specified named pipe.

You can customize the created port name.

Pipe port is connected to a given named pipe, for which it is either a creator, or a client. First, specify the
name of the pipe. Valid pipe names must conform to the following pattern: \\servername\pipe\pipename ,
where servername is either the name of the remote server or “.” for local server. If you are the creator of
the pipe, you must specify local server. Pipename must be any number of alphanumeric symbols and
must not contain slash or backslash characters.

If you are creating a pipe, you may optionally specify pipe creation parameters.

Create Listening Serial Ports
This window allows you to create new listening serial port.

Virtual Serial Port Tools Documentation Configuration Utility

40

You can customize the created port name.

Listening port is initially disconnected, but is ready to accept remote connections to form remote
bridges. If you select this port type, you may optionally configure listening port's access rights by
pressing the Permissions button.

Exporting Configuration
This window allows you to export the selected configuration into one of supported formats.

You can choose one of the following formats for export:

TypeScript
The selected device configuration is exported as TypeScript code, for example, the following text is
generated when you export a local bridge COM3 ↔ COM4 :

TypeScript
///<reference path="hhdvspkit.d.ts" />
var library = (ISerialPortLibrary) new ActiveXObject("hhdvspkit.SerialPortLibrary.5");
{
 var port1 = library.createBridgePort(3);
 var port2 = library.createBridgePort(4);
 port1.bridgePort = 4;
 port2.bridgePort = 3;
}

C#
The selected device configuration is exported as C++ code. For example, the following text is
generated when you export remote port COM6 :

C#
var library = new hhdvspkit.SerialPortLibrary();
{
 var port = library.createRemotePort(6);
 port.remoteHost = "servername";
 port.remotePort = 1;
 port.login = "UserName";
 port.domain = "Domain";
 port.password = "<password>";
}

C++

Virtual Serial Port Tools Documentation Configuration Utility

41

The selected device configuration is exported as C++ code. For example, the following text is
generated when you export an advanced configuration of a shared port COM5 :

C++
hhdvspkit::ISerialPortLibraryPtr library;
library.CreateInstance(__uuidof(hhdvspkit::SerialPortLibrary));
{
 auto port = library->createSharedPort(5);
 port->sharedPort = 1;
 port->baudRate = 115200;
 port->dataBits = 8;
 port->parity = hhdvspkit::PortParity::MarkParity;
 port->stopBits = hhdvspkit::PortStopBits::OneAndHalf;
 port->flowControl = hhdvspkit::PortFlowControl::Hardware;
}

Command-Line
The selected device configuration is exported as one or more command-line text strings. For
example, the following configuration creates and configures an alias port COM7 :

PowerShell
.\rspcli.exe -create alias --local-port 7 --alias-port 1 --baud-rate 57600 --flow-control
software

Compatibility Options
Virtual Serial Port Tools provides different compatibility options that can be configured to change the
behavior of virtual serial port driver.

Currently, the following compatibility options are supported (see also
ISerialPortLibrary.compatibilityFlags):

Value Description
Ignore
invalid
special
characters

Virtual serial ports must silently ignore invalid special characters set by
application. By default, when this compatibility flag is not set, virtual
serial ports fail requests that attempt to set invalid combination of
special characters, as required by specification.

Ignore
transmit
queue
clear purge
requests

Virtual serial devices will ignore serial purge requests with TXCLEAR
flag. This prevents unwanted behavior if the request is erroneously
sent by application while there is still data in transmit queue. Currently
applies to local bridges only.

Virtual Serial Port Tools Documentation Configuration Utility

42

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#compatibilityFlags

Command-Line Utility
Command-line utility rspcli.exe may be used as a simple API to create and manage alias, shared, remote,
pipe, tcp and script serial ports and local bridges. Command-line utility returns 0 if the requested
operation is completed successfully, or non-zero error code (HRESULT). It also prints error description to
STDOUT unless the --silent parameter is specified.

Command-line Parameters

The utility supports the following command-line parameters:

Parameter Value Descriptio
-?, --help Displays the list of

supported parameters with
short description.

--silent Do not display any error or
success messages.

-create TYPE
Create new virtual serial
device. TYPE must be one of
the following:

Type Description
alias alias port
bridge local or

remote
bridge

listening listening
port

shared shared port
remote remote port
pipe pipe-

connected
port

tcp TCP port |
script script port

-delete N Delete an existing port.

Virtual Serial Port Tools Documentation Command-Line Utility

43

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/alias-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/shared-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/remote-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/pipe-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/tcp-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/script-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/virtual-bridges/local-bridge.html

-list TYPE
List all existing virtual serial
devices. TYPE must be one
of the following:

Type Description
alias alias ports
bridge local bridge
remote-bridge remote

bridges
(client side)

listening listening
ports
(server side
of remote
bridge)

shared shared
ports

remote remote
ports

pipe pipe-
connected
ports

tcp TCP ports
script script ports

-list-remote hostname List all shared serial ports on
the specified host.

*Port Creation Parameters
--local-port N Optional local port number.

If omitted, the next available
port is used.

--device-name name Optional name to use for
created virtual serial port
device.

Alias Port Parameters
--alias-port N Original serial port number.
Bridge Parameters

Parameter Value Descriptio

Virtual Serial Port Tools Documentation Command-Line Utility

44

--bridge-ports N1,N2 Optional bridges port
numbers.

Shared Port Parameters
--share-port N Original serial port number.
Pipe Port Parameters
--create-pipe \\.\pipe\PIPENAME Name of the pipe to create.
--connect-pipe \\SERVERNAME\pipe\PIPENAME Name of the pipe to

connect to.
--num-instances N Number of port instances,

255 to unlimited.
--input-buffer-size N Size of the input buffer.
--output-buffer-size N Size of the output buffer.
--pipe-timeout N Pipe timeout.
--security-descriptor string Security descriptor in SDDL

format
Common Port Parameters
--baud-rate N Specify port baud rate to

override.
--data-bits N Specify port data bits to

override.
--parity (no | odd | even | mark | space) Specify port parity to

override.
--stop-bits (1 | 1.5 | 2) Specify port stop bits to

override.
--flow-control (none | software | hardware) Specify port flow control to

override.

--timeouts "N1,N2,N3,N4,N5" Specify port timeouts to
override. Timeout values
must be separated with
commas (no spaces allowed)
and must in the following
order: readIntervalTimeout,
readTotalMultiplier,
readTotalConstant,
writeTotalMultiplier,
writeTotalConstant. -1 can
be used to specify
MAXDWORD. Enclose the
whole parameter in double
quotation marks if using
negative numbers.

Remote Port Parameters
--remote-host hostname Name or address of remote

host that shares COM port.

Parameter Value Descriptio

Virtual Serial Port Tools Documentation Command-Line Utility

45

--remote-port N Name of the remote COM
port for RSP server or
remote TCP port for TCP/IP
server.

--login username Name of the user to use for
authentication on a remote
host. May include domain in
the form DOMAIN\USERNAME .

--password password Password of the user for
authentication on remote
computer. If omitted, the
user is asked to enter
password in terminal.

--connection-timeout N An optional connection
timeout (in milliseconds).

--connection-attempts N An optional number of
connection attempts to try
before giving up.

Listening Port Parameters
--security-descriptor string Security descriptor in SDDL

format.
Remote Bridge Parameters
--remote-host hostname Name or address of remote

host with server side of a
remote bridge.

--remote-port N Port number of a listening
port on a remote host.

--login username Name of the user to use for
authentication on a remote
host. May include domain in
the form DOMAIN\USERNAME .
Optional.

--password password Password of the user for
authentication on remote
computer. If omitted, the
user is asked to enter
password in terminal.
Optional.

TCP Port Parameters
--tcp-protocol (rfc2217 | raw)

TCP/IP emulation protocol.
Defaults to “rfc2217”.

rfc2217 RFC2217
protocol.

raw Raw
protocol.

--local-address (ip-address | *) Local address to listen on.

Parameter Value Descriptio

Virtual Serial Port Tools Documentation Command-Line Utility

46

--local-tcp-port N Local TCP port number to
listen on.

--remote-host hostname Name or address of remote
host that shares COM port.

--remote-port N Remote TCP port number.
--tcp-buffer-size N TCP buffer size, in bytes.

Default is 512KB. Allowed
range: 4KB..10MB.

Script Port Parameters
--script-file <path> Full or relative path to a

script file.
--script-log-folder <path> Full path to a folder where

script execution log files will
be created.

--script-init-value string Any custom string to use for
script initialization.

Compatibility Flags
--get-compat N

Gets the current
compatibility flags. Can be a
combination of the
following values:

0 not set
1 ignore requests

to set invalid
special
characters.

2 ignore transmit
queue clear
purge requests.

--set-compat N
Sets the current
compatibility flags. Can be a
combination of the
following values:

0 not set
1 ignore requests

to set invalid
special
characters.

2 ignore transmit
queue clear
purge requests.

Parameter Value Descriptio

Virtual Serial Port Tools Documentation Command-Line Utility

47

Redistribution
Virtual Serial Port Tools can be redistributed as part of another product providing the following
conditions are met:

A corresponding license with redistribution rights is obtained by a customer.
VSPT installation package is not modified in any way and is still signed by a valid HHD Software Ltd.
digital signature.

To facilitate simpler distribution, a separate redistributable package is provided on the product
download page. It supports unattended installation and uninstallation and is a stripped-down version of
a full installer with the following components removed:

Configuration Utility
Command-Line Utility
Remote Serial Ports Server Component
TCP/IP Serial Ports Server Component
Documentation
API headers and definitions

Installer Command-Line

Unattended Installation

PowerShell
.\virtual-serial-port-tools-redist.exe -silent

Unattended Uninstallation

PowerShell
.\virtual-serial-port-tools-redist.exe -silent -u

A calling process must have “Install Driver” privilege and must be elevated. Installer returns an integer
which is zero when successful, equals S_FALSE if successful, but restart is required, or otherwise should
be interpreted as HRESULT error code.

License Installation

The library must be activated on the client computer after installation. The user is supposed to activate
the library using the license file embedded in the product installer. The license activation is performed
with a call to ISerialPortLibrary.installLicenseFile or ISerialPortLibrary.installLicenseInMemory methods.

The following scenarios are supported:

The library is activated by the product installer after installing VSPT redistributable package.
The library is activated when the product is started for the first time.
The library is activated each time the product is started.

Therefore, it is safe to activate the library multiple times.

Activation is per-user. If the VSPT is supposed to be used by multiple Windows users after installation,
the product must activate the library for each Windows user.

Server Components Redistribution

If required, both Remote Serial Ports Server and TCP/IP Serial Ports Server components may be
redistributed separately (without the need to install the full package). Both components are single

Virtual Serial Port Tools Documentation Redistribution

48

https://hhdsoftware.com/dispatch/vspt/download-redist
file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/command-line-utility/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/sharing-com-ports-over-network/remote-serial-ports-server/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/sharing-com-ports-over-network/tcp-serial-ports-server/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#installLicenseFile
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iserialportlibrary.html#installLicenseInMemory
file:///C:/Users/alexb/AppData/Local/Temp/sharing-com-ports-over-network/remote-serial-ports-server/overview.html
file:///C:/Users/alexb/AppData/Local/Temp/sharing-com-ports-over-network/tcp-serial-ports-server/overview.html

executable files (ps_server.exe and psip_server.exe correspondingly) without any dependencies.

Servers support simple “Copy&Paste” style deployment. They can be launched from non-elevated
command prompt (or PowerShell or Windows Terminal) window and configured using command-line
parameters.

In addition, both servers can be configured to be run as Windows Services. In this case, their
corresponding configuration utilities must be used to configure them.

NOTE
TCP/IP Serial Ports Server requires the license to be installed on the computer it is running on.

Virtual Serial Port Tools Documentation Redistribution

49

VSPT API
Virtual Serial Port Tools installs an in-process COM server providing full-featured API to native, .NET or
scripting clients. This documentation section describes the provided API in detail.

Any user code that intends to call any API method or use any API interface must have sufficient rights on
the local computer. This means at least SeLoadDriverPrivilege privilege must be granted to the calling
process and usually also means that the caller needs to be running elevated.

Using from Native Code

In order to use the API in native code, include the supplied header files:

C++
#include "clientctl.tlh"
#include "clientctl.tli"

These files are pre-installed in the %INSTALLDIR%\api\native folder.

After that you can use all library classes and interfaces. For example, to create an instance of the library
object and then create a new alias virtual serial port, use the following code:

C++
hhdvspkit::ISerialPortLibraryPtr pLibrary;
if (SUCCEEDED(pLibrary.CreateInstance(__uuidof(hhdvspkit::SerialPortLibrary))))
{
 // create new alias virtual serial port with automatically-assigned port name
 auto pNewPort = pLibrary->createAliasPort();
 // configure created port
 pNewPort1->put_aliasPort = 1;
 // ...
}

Using from C#

In order to use the library from C# project, add a reference to the supplied hhdvspkit.interop.dll file to
your project in Microsoft Visual Studio. The file is pre-installed in the %INSTALLDIR%\api\interop folder.

Use the API provided by the library:

C#
var library = new hhdvspkit.SerialPortLibrary();
var port = library.createAliasPort();
port.aliasPort = 1;
// ...

Adding a reference to hhdvspkit.dll in Visual Studio generates an interop DLL that exposes .NET
wrappers for native code provided by the COM server. You can also add a reference to the included
hhdvspkit.interop.dll , which is a pre-generated version of the interop DLL.

Using from JavaScript

To create an instance of the library, use the following code:

JavaScript
var library = new ActiveXObject("hhdvspkit.SerialPortLibrary.5");

Then, use the library object to create and manage virtual serial devices:

Virtual Serial Port Tools Documentation VSPT API

50

JavaScript
// create new virtual serial port
var port = library.createAliasPort();
// configure serial port
port.aliasPort = 1;
// ...

Using from TypeScript

Virtual Serial Port Tools library contains TypeScript definition file that simplifies library usage in scripting
environments. It automatically gives you method parameter type validation and simplifies specifying
callback methods.

TypeScript
///<reference path="hhdvspkit.d.ts" />
var library = (ISerialPortLibrary) new ActiveXObject("hhdvspkit.SerialPortLibrary.5");
// create new virtual serial port with automatically-assigned port name
var port = library.createAliasPort();
// configure port
port.aliasPort = 1;
// ...

ISerialPortLibrary

ISerialPortLibrary Interface
TypeScript
interface ISerialPortLibrary {
 // Properties
 compatibilityFlags: CompatibilityFlags;

 // Methods
 createAliasPort(port?: number | string, deviceName?: string): IAliasPortDevice;
 createBridgePort(port?: number | string, deviceName?: string): IBridgePortDevice;
 createSharedPort(port?: number | string, reserved?: boolean, deviceName?: string):
ISharedPortDevice;
 createScriptPort(port?: number | string, deviceName?: string): IScriptPortDevice;
 createTcpPort(port?: number | string, deviceName?: string): ITcpPortDevice;
 createRemotePort(port?: number | string, deviceName?: string): IRemotePortDevice;
 createPipePort(port?: number | string, deviceName?: string): IPipePortDevice;
 getRemoteSharedPortsJs(hostName: string): IRemotePortDescription[];
 getPortsJs(type: SerialPortType): IDevice[];
 getPortsJs(type: SerialPortType.Remote): IRemotePortDevice[];
 getPortsJs(type: SerialPortType.Shared): ISharedPortDevice[];
 getPortsJs(type: SerialPortType.Alias): IAliasPortDevice[];
 getPortsJs(type: SerialPortType.Bridge): IBridgePortDevice[];
 getPortsJs(type: SerialPortType.Pipe): IPipePortDevice[];
 getPortsJs(type: SerialPortType.Tcp): ITcpPortDevice[];
 getPortsJs(type: SerialPortType.Script): IScriptPortDevice[];
 createTimeoutsObject(readIntervalTimeout: number,
 readTotalTimeoutMultiplier: number,
 readTotalTimeoutConstant: number,
 writeTotalTimeoutMultiplier: number,
 writeTotalTimeoutConstant: number): ITimeouts;
 installLicenseFile(path: string): void;
}

Virtual Serial Port Tools Documentation VSPT API

51

C#
public interface ISerialPortLibrary
{
 // Properties
 CompatibilityFlags compatibilityFlags { get; set; }

 // Methods
 IAliasPortDevice createAliasPort(object port, string deviceName);
 IBridgePortDevice createBridgePort(object port, string deviceName);
 ISharedPortDevice createSharedPort(object port, bool reserved, string deviceName);
 IScriptPortDevice createScriptPort(object port, string deviceName);
 ITcpPortDevice createTcpPort(object port, string deviceName);
 IRemotePortDevice createRemotePort(object port, string deviceName);
 IPipePortDevice createPipePort(object port, string deviceName);
 Array getRemoteSharedPorts(string hostName);
 Array getPorts(SerialPortType type);
 ITimeouts createTimeoutsObject(uint readIntervalTimeout,
 uint readTotalTimeoutMultiplier,
 uint readTotalTimeoutConstant,
 uint writeTotalTimeoutMultiplier,
 uint writeTotalTimeoutConstant);
 void addListener(ISerialPortLibraryListener pListener);
 void removeListener(ISerialPortLibraryListener pListener);
 void installLicenseFile(string path);
 void installLicenseInMemory(byte[] data);
}

C++
struct ISerialPortLibrary : IDispatch
{
 // Properties
 CompatibilityFlags compatibilityFlags; // get set

 // Methods
 IAliasPortDevicePtr createAliasPort(const _variant_t & port, VARIANT deviceName);
 IBridgePortDevicePtr createBridgePort(const _variant_t & port, VARIANT deviceName);
 ISharedPortDevicePtr createSharedPort(const _variant_t & port, VARIANT reserved, VARIANT
deviceName);
 IScriptPortDevicePtr createScriptPort(const _variant_t & port, VARIANT deviceName);
 ITcpPortDevicePtr createTcpPort(const _variant_t & port, VARIANT deviceName);
 IRemotePortDevicePtr createRemotePort(const _variant_t & port, VARIANT deviceName);
 IPipePortDevicePtr createPipePort(const _variant_t & port, VARIANT deviceName);
 SAFEARRAY(IRemotePortDescription) getRemoteSharedPorts(_bstr_t hostName);
 SAFEARRAY(IDevice) getPorts(SerialPortType type);
 ITimeoutsPtr createTimeoutsObject(unsigned readIntervalTimeout,
 unsigned readTotalTimeoutMultiplier,
 unsigned readTotalTimeoutConstant,
 unsigned writeTotalTimeoutMultiplier,
 unsigned writeTotalTimeoutConstant);
 HRESULT addListener(ISerialPortLibraryListener * pListener);
 HRESULT removeListener(ISerialPortLibraryListener * pListener);
 HRESULT installLicenseFile(_bstr_t path);
 HRESULT installLicenseInMemory(SAFEARRAY(BYTE) data);
};

ISerialPortLibrary Properties

compatibilityFlags

TypeScript
compatibilityFlags: CompatibilityFlags;

C#
CompatibilityFlags compatibilityFlags { get; set; }

Virtual Serial Port Tools Documentation VSPT API

52

C++
CompatibilityFlags compatibilityFlags; // get set

Description

Zero or more of compatibility flags that can be set to increase compatibility with legacy software.

ISerialPortLibrary Methods

createAliasPort

TypeScript
createAliasPort(port?: number | string, deviceName?: string): IAliasPortDevice;

C#
IAliasPortDevice createAliasPort(object port, string deviceName);

C++
IAliasPortDevicePtr createAliasPort(const _variant_t & port, VARIANT deviceName);

Parameters

port

Port number or a string formatted as COMn . If omitted, a next available port number is
automatically selected.

deviceName

Optional device name (visible in Device Manager). By default, “HHD Software Alias Serial Port” is
used. In native code, variant type must be VT_EMPTY or VT_BSTR .

Return Value

The method returns a reference to created port device.

Description

Create new alias virtual serial port.

createBridgePort

TypeScript
createBridgePort(port?: number | string, deviceName?: string): IBridgePortDevice;

C#
IBridgePortDevice createBridgePort(object port, string deviceName);

C++
IBridgePortDevicePtr createBridgePort(const _variant_t & port, VARIANT deviceName);

Parameters

port

Port number or a string formatted as COMn . If omitted, a next available port number is

Virtual Serial Port Tools Documentation VSPT API

53

automatically selected.
deviceName

Optional device name (visible in Device Manager). By default, “HHD Software Bridged Serial Port”
is used. In native code, variant type must be VT_EMPTY or VT_BSTR .

Return Value

The method returns a reference to created port device.

Description

Create new virtual serial port that will act as one of the local bridge sides.

createSharedPort

TypeScript
createSharedPort(port?: number | string, reserved?: boolean, deviceName?: string):
ISharedPortDevice;

C#
ISharedPortDevice createSharedPort(object port, bool reserved, string deviceName);

C++
ISharedPortDevicePtr createSharedPort(const _variant_t & port, VARIANT reserved, VARIANT
deviceName);

Parameters

port

Port number or a string formatted as COMn . If omitted, a next available port number is
automatically selected.

reserved

This parameter is reserved, you must pass false to it, or omit entirely.
deviceName

Optional device name (visible in Device Manager). By default, “HHD Software Shared Serial Port” is
used. In native code, variant type must be VT_EMPTY or VT_BSTR .

Return Value

The method returns a reference to created port device.

Description

Create new shared virtual serial port.

createScriptPort

TypeScript
createScriptPort(port?: number | string, deviceName?: string): IScriptPortDevice;

C#
IScriptPortDevice createScriptPort(object port, string deviceName);

Virtual Serial Port Tools Documentation VSPT API

54

C++
IScriptPortDevicePtr createScriptPort(const _variant_t & port, VARIANT deviceName);

Parameters

port

Port number or a string formatted as COMn . If omitted, a next available port number is
automatically selected.

deviceName

Optional device name (visible in Device Manager). By default, “HHD Software Script Serial Port” is
used. In native code, variant type must be VT_EMPTY or VT_BSTR .

Return Value

The method returns a reference to created port device.

Description

Create new virtual script serial port.

createTcpPort

TypeScript
createTcpPort(port?: number | string, deviceName?: string): ITcpPortDevice;

C#
ITcpPortDevice createTcpPort(object port, string deviceName);

C++
ITcpPortDevicePtr createTcpPort(const _variant_t & port, VARIANT deviceName);

Parameters

port

Port number or a string formatted as COMn . If omitted, a next available port number is
automatically selected.

deviceName

Optional device name (visible in Device Manager). By default, “HHD Software Network Serial Port”
is used. In native code, variant type must be VT_EMPTY or VT_BSTR .

Return Value

The method returns a reference to created port device.

Description

Create new TCP virtual serial port.

createRemotePort

TypeScript
createRemotePort(port?: number | string, deviceName?: string): IRemotePortDevice;

Virtual Serial Port Tools Documentation VSPT API

55

C#
IRemotePortDevice createRemotePort(object port, string deviceName);

C++
IRemotePortDevicePtr createRemotePort(const _variant_t & port, VARIANT deviceName);

Parameters

port

Port number or a string formatted as COMn . If omitted, a next available port number is
automatically selected.

deviceName

Optional device name (visible in Device Manager). By default, “HHD Software Remote Serial Port”
is used. In native code, variant type must be VT_EMPTY or VT_BSTR .

Return Value

The method returns a reference to created port device.

Description

Create new remote virtual serial port.

createPipePort

TypeScript
createPipePort(port?: number | string, deviceName?: string): IPipePortDevice;

C#
IPipePortDevice createPipePort(object port, string deviceName);

C++
IPipePortDevicePtr createPipePort(const _variant_t & port, VARIANT deviceName);

Parameters

port

Port number or a string formatted as COMn . If omitted, a next available port number is
automatically selected.

deviceName

Optional device name (visible in Device Manager). By default, “HHD Software Pipe Serial Port” is
used. In native code, variant type must be VT_EMPTY or VT_BSTR .

Description

Create new pipe virtual serial port.

getRemoteSharedPorts

TypeScript
// This method is not available in scripting environment

Virtual Serial Port Tools Documentation VSPT API

56

C#
Array getRemoteSharedPorts(string hostName);

C++
SAFEARRAY(IRemotePortDescription) getRemoteSharedPorts(_bstr_t hostName);

Parameters

hostName

Name of the remote host which ports you want to enumerate.

Return Value

Method returns an array of IRemotePortDescription objects containing all shared ports on a remote
server.

Description

Get a list of all shared serial ports on a remote server specified by hostname parameter.

getRemoteSharedPortsJs

TypeScript
getRemoteSharedPortsJs(hostName: string): IRemotePortDescription[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

hostName

Name of the remote host which ports you want to enumerate.

Return Value

Method returns an array of IRemotePortDescription objects containing all shared ports on a remote
server.

Description

Get a list of all shared serial ports on a remote server specified by hostname parameter.

getPorts

TypeScript
// This method is not available in scripting environment

C#
Array getPorts(SerialPortType type);

Virtual Serial Port Tools Documentation VSPT API

57

C++
SAFEARRAY(IDevice) getPorts(SerialPortType type);

Parameters

type

The type of port devices to return.

Return Value

This method returns an array of all local virtual serial port devices of specified type.

getPortsJs

TypeScript
getPortsJs(type: SerialPortType): IDevice[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

type

A type of virtual serial port to return.

Return Value

This method returns an array of all local virtual serial port devices of specified type.

getPortsJs

TypeScript
getPortsJs(type: SerialPortType.Remote): IRemotePortDevice[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

type

A remote virtual serial port type.

Return Value

This method returns an array of all remote virtual serial port devices.

getPortsJs

Virtual Serial Port Tools Documentation VSPT API

58

TypeScript
getPortsJs(type: SerialPortType.Shared): ISharedPortDevice[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

type

A shared virtual serial port type.

Return Value

This method returns an array of all shared virtual serial port devices.

getPortsJs

TypeScript
getPortsJs(type: SerialPortType.Alias): IAliasPortDevice[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

type

A alias virtual serial port type.

Return Value

This method returns an array of all alias virtual serial port devices.

getPortsJs

TypeScript
getPortsJs(type: SerialPortType.Bridge): IBridgePortDevice[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

type

A bridge virtual serial port type.

Virtual Serial Port Tools Documentation VSPT API

59

Return Value

This method returns an array of all bridge virtual serial port devices.

getPortsJs

TypeScript
getPortsJs(type: SerialPortType.Pipe): IPipePortDevice[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

type

A pipe virtual serial port type.

Return Value

This method returns an array of all pipe virtual serial port devices.

getPortsJs

TypeScript
getPortsJs(type: SerialPortType.Tcp): ITcpPortDevice[];

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

type

A TCP/IP virtual serial port type.

Return Value

This method returns an array of all TCP/IP virtual serial port devices.

getPortsJs

TypeScript
getPortsJs(type: SerialPortType.Script): IScriptPortDevice[];

C#
// This method is not available in managed environment

Virtual Serial Port Tools Documentation VSPT API

60

C++
// This method is not available in native environment

Parameters

type

A script virtual serial port type.

Return Value

This method returns an array of all script virtual serial port devices.

createTimeoutsObject

TypeScript
createTimeoutsObject(readIntervalTimeout: number,
 readTotalTimeoutMultiplier: number,
 readTotalTimeoutConstant: number,
 writeTotalTimeoutMultiplier: number,
 writeTotalTimeoutConstant: number): ITimeouts;

C#
ITimeouts createTimeoutsObject(uint readIntervalTimeout,
 uint readTotalTimeoutMultiplier,
 uint readTotalTimeoutConstant,
 uint writeTotalTimeoutMultiplier,
 uint writeTotalTimeoutConstant);

C++
ITimeoutsPtr createTimeoutsObject(unsigned readIntervalTimeout,
 unsigned readTotalTimeoutMultiplier,
 unsigned readTotalTimeoutConstant,
 unsigned writeTotalTimeoutMultiplier,
 unsigned writeTotalTimeoutConstant);

Parameters

readIntervalTimeout

Read interval timeout.
readTotalTimeoutMultiplier

Read total timeout multiplier.
readTotalTimeoutConstant

Read total timeout constant.
writeTotalTimeoutMultiplier

Write total timeout multiplier.
writeTotalTimeoutConstant

Write total timeout constant.

Description

This method creates a timeouts override object. Scripting languages may construct and assign
timeouts override objects directly, while native and managed languages may use this helper method to
create a pre-filled timeouts override object.

Virtual Serial Port Tools Documentation VSPT API

61

addListener

TypeScript
// This method is not available in scripting environment

C#
void addListener(ISerialPortLibraryListener pListener);

C++
HRESULT addListener(ISerialPortLibraryListener * pListener);

Parameters

pListener

Pointer or reference to the listener interface implemented by the caller.

Description

Adds specified listener object to the list of listener objects. When new virtual serial devices are created
or deleted, library calls methods of the supplied listener object, passing the list of affected devices.

removeListener

TypeScript
// This method is not available in scripting environment

C#
void removeListener(ISerialPortLibraryListener pListener);

C++
HRESULT removeListener(ISerialPortLibraryListener * pListener);

Parameters

pListener

Pointer or reference to the listener interface implemented by the caller.

Description

Removes specified listener object from the list of listener objects.

installLicenseFile

TypeScript
installLicenseFile(path: string): void;

C#
void installLicenseFile(string path);

C++
HRESULT installLicenseFile(_bstr_t path);

Virtual Serial Port Tools Documentation VSPT API

62

Parameters

path

A full path to license file.

Description

Install the given license file. Throws an exception if an error occurs.

installLicenseInMemory

TypeScript
// This method is not available in scripting environment

C#
void installLicenseInMemory(byte[] data);

C++
HRESULT installLicenseInMemory(SAFEARRAY(BYTE) data);

Parameters

data

License data in memory.

Description

Install the license from the memory buffer.

ISerialPortLibraryListener Interface
Description

This interface is implemented by the user application to receive notifications about created and deleted
virtual serial devices. An instance of the object implementing this interface must be registered with a
library by calling ISerialPortLibrary.addListener method.

Declaration

TypeScript
// This interface is not available in scripting environment

C#
public interface ISerialPortLibraryListener
{

 // Methods
 void added(SerialPortType type, Array devices);
 void deleted(SerialPortType type, Array devices);
}

Virtual Serial Port Tools Documentation VSPT API

63

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/iserialportlibrary.html#addListener

C++
struct ISerialPortLibraryListener : IDispatch
{

 // Methods
 HRESULT added(SerialPortType type, SAFEARRAY(IDevice) devices);
 HRESULT deleted(SerialPortType type, SAFEARRAY(IDevice) devices);
};

ISerialPortLibraryListener Methods

added

TypeScript
// This method is not available in scripting environment

C#
void added(SerialPortType type, Array devices);

C++
HRESULT added(SerialPortType type, SAFEARRAY(IDevice) devices);

Parameters

type

The type of devices in the notification
devices

Array of devices that are being created.

Description

Called when devices of specified type are being created.

deleted

TypeScript
// This method is not available in scripting environment

C#
void deleted(SerialPortType type, Array devices);

C++
HRESULT deleted(SerialPortType type, SAFEARRAY(IDevice) devices);

Parameters

type

The type of devices in the notification
devices

Array of devices that have been deleted.

Description

Called after devices of specified type have been deleted.

Virtual Serial Port Tools Documentation VSPT API

64

SerialPortType

IDevice Interface
Description

This is a base interface for all supported device types: alias, shared, remote and local bridge.

Declaration

TypeScript
interface IDevice {
 // Properties
 readonly port: number;
 readonly devicePath: string;
 readonly openingInfo: IOpeningInfo;

 // Methods
 deleteDevice(): void;
}

C#
public interface IDevice
{
 // Properties
 uint port { get; }
 string devicePath { get; }
 IOpeningInfo openingInfo { get; }

 // Methods
 void deleteDevice();
}

C++
struct IDevice : IDispatch
{
 // Properties
 unsigned port; // get
 _bstr_t devicePath; // get
 IOpeningInfo openingInfo; // get

 // Methods
 HRESULT deleteDevice();
};

IDevice Properties

port

TypeScript
readonly port: number;

C#
uint port { get; }

C++
unsigned port; // get

Description

Virtual Serial Port Tools Documentation VSPT API

65

Contains the port number assigned by the OS to the current virtual serial port device.

devicePath

TypeScript
readonly devicePath: string;

C#
string devicePath { get; }

C++
_bstr_t devicePath; // get

Description

Contains the unique port path. This unique path may be passed to CreateFile function instead of
usual COMn .

openingInfo

TypeScript
readonly openingInfo: IOpeningInfo;

C#
IOpeningInfo openingInfo { get; }

C++
IOpeningInfo openingInfo; // get

Description

An object whose properties can be queried to get the information about the process that opened the
port and current port parameters.

If the port is not currently opened, an exception is thrown.

IDevice Methods

deleteDevice

TypeScript
deleteDevice(): void;

C#
void deleteDevice();

C++
HRESULT deleteDevice();

Description

Call this method to delete the virtual serial port device. Actual device is deleted immediately (notifying

Virtual Serial Port Tools Documentation VSPT API

66

any registered listeners through their ISerialPortLibraryListener.deleted method), however, the API
device object is only destroyed when all references are released.

ISerialPortLibrary.getPorts and ISerialPortLibrary.getPortsJs methods do not list deleted devices, even if
there are still references to them.

IConfigurableDevice Interface
Description

This is a base interface, that derives from IDevice and supports alias and shared ports.

Declaration

TypeScript
interface IConfigurableDevice extends IDevice {
 // Properties
 baudRate: number;
 dataBits: number;
 parity: PortParity;
 stopBits: PortStopBits;
 flowControl: PortFlowControl;
 timeouts: ITimeouts;
}

C#
public interface IConfigurableDevice : IDevice
{
 // Properties
 uint baudRate { get; set; }
 uint dataBits { get; set; }
 PortParity parity { get; set; }
 PortStopBits stopBits { get; set; }
 PortFlowControl flowControl { get; set; }
 ITimeouts timeouts { get; set; }
}

C++
struct IConfigurableDevice : IDevice
{
 // Properties
 unsigned baudRate; // get set
 unsigned dataBits; // get set
 PortParity parity; // get set
 PortStopBits stopBits; // get set
 PortFlowControl flowControl; // get set
 ITimeoutsPtr timeouts; // get set
};

IConfigurableDevice Properties

baudRate

TypeScript
baudRate: number;

C#
uint baudRate { get; set; }

Virtual Serial Port Tools Documentation VSPT API

67

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/iserialportlibrarylistener.html#deleted
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/iserialportlibrary.html#getPorts
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/iserialportlibrary.html#getPortsJs
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/idevice.html

C++
unsigned baudRate; // get set

Description

Baud rate override.

dataBits

TypeScript
dataBits: number;

C#
uint dataBits { get; set; }

C++
unsigned dataBits; // get set

Description

Data bits override.

parity

TypeScript
parity: PortParity;

C#
PortParity parity { get; set; }

C++
PortParity parity; // get set

Description

Parity override.

stopBits

TypeScript
stopBits: PortStopBits;

C#
PortStopBits stopBits { get; set; }

C++
PortStopBits stopBits; // get set

Description

Stop bits override.

Virtual Serial Port Tools Documentation VSPT API

68

flowControl

TypeScript
flowControl: PortFlowControl;

C#
PortFlowControl flowControl { get; set; }

C++
PortFlowControl flowControl; // get set

Description

Flow control override.

timeouts

TypeScript
timeouts: ITimeouts;

C#
ITimeouts timeouts { get; set; }

C++
ITimeoutsPtr timeouts; // get set

Description

Port timeouts override.

IDevice PortParity PortStopBits PortFlowControl ITimeouts

IAliasPortDevice Interface
Description

This interface is implemented by an alias port device.

Declaration

TypeScript
interface IAliasPortDevice extends IConfigurableDevice {
 // Properties
 aliasPort: number;
 targetDevicePath: string;
}

C#
public interface IAliasPortDevice : IConfigurableDevice
{
 // Properties
 uint aliasPort { get; set; }
 string targetDevicePath { get; set; }
}

Virtual Serial Port Tools Documentation VSPT API

69

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/alias-ports.html

C++
struct IAliasPortDevice : IConfigurableDevice
{
 // Properties
 unsigned aliasPort; // get set
 _bstr_t targetDevicePath; // get set
};

IAliasPortDevice Properties

aliasPort

TypeScript
aliasPort: number;

C#
uint aliasPort { get; set; }

C++
unsigned aliasPort; // get set

Description

Port number of original serial port this device is an alias for.

targetDevicePath

TypeScript
targetDevicePath: string;

C#
string targetDevicePath { get; set; }

C++
_bstr_t targetDevicePath; // get set

Description

An alternative way to specify the original serial port by its device path.

IBridgePortDevice Interface
Description

This interface is implemented by a local bridge device.

Declaration

Virtual Serial Port Tools Documentation VSPT API

70

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/virtual-bridges/local-bridge.html

TypeScript
interface IBridgePortDevice extends IDevice {
 // Properties
 bridgePort: number;
 bridgeServer: string;
 readonly isLocal: boolean;
 readonly isListening: boolean;
 remoteLogin: string;
 remoteDomain: string;
 remotePassword: string;
 readonly securityDescriptor: string;
 emulateBaudrate: boolean;
 emulateTxOverflow: boolean;
 crossoverProbability: number;
 DTR: DestinationPins;
 DSR: DestinationPins;
 DCD: DestinationPins;
 RTS: DestinationPins;
 CTS: DestinationPins;
 RI: DestinationPins;

 // Methods
 restoreDefaultPins(): void;
 startListening(securityDescriptor?: string): void;
}

C#
public interface IBridgePortDevice : IDevice
{
 // Properties
 uint bridgePort { get; set; }
 string bridgeServer { get; set; }
 bool isLocal { get; }
 bool isListening { get; }
 string remoteLogin { get; set; }
 string remoteDomain { get; set; }
 string remotePassword { get; set; }
 string securityDescriptor { get; }
 bool emulateBaudrate { get; set; }
 bool emulateTxOverflow { get; set; }
 double crossoverProbability { get; set; }
 DestinationPins DTR { get; set; }
 DestinationPins DSR { get; set; }
 DestinationPins DCD { get; set; }
 DestinationPins RTS { get; set; }
 DestinationPins CTS { get; set; }
 DestinationPins RI { get; set; }

 // Methods
 void restoreDefaultPins();
 void startListening(string securityDescriptor);
}

Virtual Serial Port Tools Documentation VSPT API

71

C++
struct IBridgePortDevice : IDevice
{
 // Properties
 unsigned bridgePort; // get set
 _bstr_t bridgeServer; // get set
 VARIANT_BOOL isLocal; // get
 VARIANT_BOOL isListening; // get
 _bstr_t remoteLogin; // get set
 _bstr_t remoteDomain; // get set
 _bstr_t remotePassword; // get set
 _bstr_t securityDescriptor; // get
 VARIANT_BOOL emulateBaudrate; // get set
 VARIANT_BOOL emulateTxOverflow; // get set
 double crossoverProbability; // get set
 DestinationPins DTR; // get set
 DestinationPins DSR; // get set
 DestinationPins DCD; // get set
 DestinationPins RTS; // get set
 DestinationPins CTS; // get set
 DestinationPins RI; // get set

 // Methods
 HRESULT restoreDefaultPins();
 HRESULT startListening(_bstr_t securityDescriptor);
};

IBridgePortDevice Properties

bridgePort

TypeScript
bridgePort: number;

C#
uint bridgePort { get; set; }

C++
unsigned bridgePort; // get set

Description

Port number of other side of the local or remote bridge.

bridgeServer

TypeScript
bridgeServer: string;

C#
string bridgeServer { get; set; }

C++
_bstr_t bridgeServer; // get set

Description

Name or address of the remote server on which a listening port is created. Do not set this property to
create a local bridge.

Virtual Serial Port Tools Documentation VSPT API

72

isLocal

TypeScript
readonly isLocal: boolean;

C#
bool isLocal { get; }

C++
VARIANT_BOOL isLocal; // get

Description

True if this device is part of a local bridge or false otherwise. If isListening property is true , this
property would be false .

isListening

TypeScript
readonly isListening: boolean;

C#
bool isListening { get; }

C++
VARIANT_BOOL isListening; // get

Description

True if this device is in a listening state (that is, “server” side of a remote bridge).

remoteLogin

TypeScript
remoteLogin: string;

C#
string remoteLogin { get; set; }

C++
_bstr_t remoteLogin; // get set

Description

Optional user name or login to use when connecting to a remote listening port (do not set this
property for local bridges).

remoteDomain

TypeScript
remoteDomain: string;

Virtual Serial Port Tools Documentation VSPT API

73

C#
string remoteDomain { get; set; }

C++
_bstr_t remoteDomain; // get set

Description

Optional domain name to use when connecting to a remote listening port (do not set this property for
local bridges). Can be empty to use default remote computer domain.

remotePassword

TypeScript
remotePassword: string;

C#
string remotePassword { get; set; }

C++
_bstr_t remotePassword; // get set

Description

Optional user password to use when connecting to a remote listening port (do not set this property for
local bridges).

This property is write-only.

securityDescriptor

TypeScript
readonly securityDescriptor: string;

C#
string securityDescriptor { get; }

C++
_bstr_t securityDescriptor; // get

Description

This read-only property returns a copy of listening's port security descriptor, in string SD format.

emulateBaudrate

TypeScript
emulateBaudrate: boolean;

C#
bool emulateBaudrate { get; set; }

Virtual Serial Port Tools Documentation VSPT API

74

C++
VARIANT_BOOL emulateBaudrate; // get set

Description

Turn emulation of baud rate on or off.

By default, Virtual Serial Port Tools does not emulate baud rate.

emulateTxOverflow

TypeScript
emulateTxOverflow: boolean;

C#
bool emulateTxOverflow { get; set; }

C++
VARIANT_BOOL emulateTxOverflow; // get set

Description

Turn emulation of output buffer overflow on or off.

By default, Virtual Serial Port Tools does not emulate output buffer overflow.

crossoverProbability

TypeScript
crossoverProbability: number;

C#
double crossoverProbability { get; set; }

C++
double crossoverProbability; // get set

Description

Single bit crossover probability. May be a floating-point number between 0 and 0.5 (inclusive). Value 0
disables line noise emulation.

By default, Virtual Serial Port Tools does not emulate line noise. Change the value of this property to
enable line noise emulation.

DTR

TypeScript
DTR: DestinationPins;

C#
DestinationPins DTR { get; set; }

Virtual Serial Port Tools Documentation VSPT API

75

C++
DestinationPins DTR; // get set

Description

Allows configuration of custom pin-out for a local DTR line.

DSR

TypeScript
DSR: DestinationPins;

C#
DestinationPins DSR { get; set; }

C++
DestinationPins DSR; // get set

Description

Allows configuration of custom pin-out for a local DSR line.

DCD

TypeScript
DCD: DestinationPins;

C#
DestinationPins DCD { get; set; }

C++
DestinationPins DCD; // get set

Description

Allows configuration of custom pin-out for a local DCD line.

RTS

TypeScript
RTS: DestinationPins;

C#
DestinationPins RTS { get; set; }

C++
DestinationPins RTS; // get set

Description

Allows configuration of custom pin-out for a local RTS line.

Virtual Serial Port Tools Documentation VSPT API

76

CTS

TypeScript
CTS: DestinationPins;

C#
DestinationPins CTS { get; set; }

C++
DestinationPins CTS; // get set

Description

Allows configuration of custom pin-out for a local CTS line.

RI

TypeScript
RI: DestinationPins;

C#
DestinationPins RI { get; set; }

C++
DestinationPins RI; // get set

Description

Allows configuration of custom pin-out for a local RI line.

IBridgePortDevice Methods

restoreDefaultPins

TypeScript
restoreDefaultPins(): void;

C#
void restoreDefaultPins();

C++
HRESULT restoreDefaultPins();

Description

This method restores default pin-out assignment.

startListening

TypeScript
startListening(securityDescriptor?: string): void;

Virtual Serial Port Tools Documentation VSPT API

77

C#
void startListening(string securityDescriptor);

C++
HRESULT startListening(_bstr_t securityDescriptor);

Parameters

securityDescriptor

Optional listening port's security descriptor, in string SD format. If omitted, or empty string is
passed, defaults to allowing “Everyone” to connect to the port.

Description

Starts listening port, optionally applying passed security descriptor. After this method returns, a remote
bridge device may connect to this listening port.

Note that the actual connection occurs only when the client bridge port is opened by some
application.

IDevice

ISharedPortDevice Interface
Description

This interface is implemented by a shared port device.

Declaration

TypeScript
interface ISharedPortDevice extends IConfigurableDevice {
 // Properties
 sharedPort: number;
}

C#
public interface ISharedPortDevice : IConfigurableDevice
{
 // Properties
 uint sharedPort { get; set; }
}

C++
struct ISharedPortDevice : IConfigurableDevice
{
 // Properties
 unsigned sharedPort; // get set
};

ISharedPortDevice Properties

sharedPort

TypeScript
sharedPort: number;

Virtual Serial Port Tools Documentation VSPT API

78

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/shared-ports.html

C#
uint sharedPort { get; set; }

C++
unsigned sharedPort; // get set

Description

Port number of original serial port this device is sharing.

IConfigurableDevice

ITcpPortDevice Interface
Description

This interface is implemented by a tcp port device.

Declaration

TypeScript
interface ITcpPortDevice extends IConfigurableDevice {
 // Properties
 remoteHost: string;
 remoteTcpPort: number;
 localAddress: string;
 localTcpPort: number;
 protocol: TcpPortProtocol;
 reconnectTimeout: number;
 bufferSize: number;
}

C#
public interface ITcpPortDevice : IConfigurableDevice
{
 // Properties
 string remoteHost { get; set; }
 uint remoteTcpPort { get; set; }
 string localAddress { get; set; }
 uint localTcpPort { get; set; }
 TcpPortProtocol protocol { get; set; }
 uint reconnectTimeout { get; set; }
 uint bufferSize { get; set; }
}

C++
struct ITcpPortDevice : IConfigurableDevice
{
 // Properties
 _bstr_t remoteHost; // get set
 unsigned remoteTcpPort; // get set
 _bstr_t localAddress; // get set
 unsigned localTcpPort; // get set
 TcpPortProtocol protocol; // get set
 unsigned reconnectTimeout; // get set
 unsigned bufferSize; // get set
};

ITcpPortDevice Properties

remoteHost

Virtual Serial Port Tools Documentation VSPT API

79

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/tcp-ports.html

TypeScript
remoteHost: string;

C#
string remoteHost { get; set; }

C++
_bstr_t remoteHost; // get set

Description

Remote endpoint's host name or address. DNS, NETBIOS and other types of host names are supported
as well as IPv4 and IPv6 IP addresses.

Setting this property sets the virtual serial port to “connecting” mode. If the property is read and the
virtual port is in “listening” mode, an empty string is returned.

remoteTcpPort

TypeScript
remoteTcpPort: number;

C#
uint remoteTcpPort { get; set; }

C++
unsigned remoteTcpPort; // get set

Description

Remote endpoint's TCP port number.

Setting this property sets the virtual serial port to “connecting” mode. If the property is read and the
virtual port is in “listening” mode, a value of zero is returned.

localAddress

TypeScript
localAddress: string;

C#
string localAddress { get; set; }

C++
_bstr_t localAddress; // get set

Description

Local listening IPv4 or IPv6 address. Can also be * to specify that the port should listen on all local
addresses.

Setting this property sets the virtual serial port to “listening” mode. If the property is read and the
virtual port is in “connecting” mode, an empty string is returned.

Virtual Serial Port Tools Documentation VSPT API

80

localTcpPort

TypeScript
localTcpPort: number;

C#
uint localTcpPort { get; set; }

C++
unsigned localTcpPort; // get set

Description

Local listening TCP port number.

Setting this property sets the virtual serial port to “listening” mode. If the property is read and the
virtual port is in “connecting” mode, a value of zero is returned.

protocol

TypeScript
protocol: TcpPortProtocol;

C#
TcpPortProtocol protocol { get; set; }

C++
TcpPortProtocol protocol; // get set

Description

Set or retrieve the virtual serial port protocol.

reconnectTimeout

TypeScript
reconnectTimeout: number;

C#
uint reconnectTimeout { get; set; }

C++
unsigned reconnectTimeout; // get set

Description

The value of reconnection timeout, in milliseconds. This is the time that virtual serial port waits until
trying to re-establish a broken network connection. Only relevant to virtual serial ports in “connecting”
mode.

bufferSize

Virtual Serial Port Tools Documentation VSPT API

81

TypeScript
bufferSize: number;

C#
uint bufferSize { get; set; }

C++
unsigned bufferSize; // get set

Description

Internal TCP buffer size, in bytes. The default value is 512 KB. Supported range is 4 KB..10 MB. Prefer
larger values for high-speed transfers.

IConfigurableDevice

IRemotePortDevice Interface
Description

This interface is implemented by a remote port device.

Declaration

TypeScript
interface IRemotePortDevice extends IDevice {
 // Properties
 remoteHost: string;
 remotePort: number;
 connectionTimeout: number;
 connectionAttempts: number;
 login: string;
 password: string;
 domain: string;
}

C#
public interface IRemotePortDevice : IDevice
{
 // Properties
 string remoteHost { get; set; }
 uint remotePort { get; set; }
 uint connectionTimeout { get; set; }
 uint connectionAttempts { get; set; }
 string login { get; set; }
 string password { set; }
 string domain { get; set; }
}

C++
struct IRemotePortDevice : IDevice
{
 // Properties
 _bstr_t remoteHost; // get set
 unsigned int remotePort; // get set
 unsigned int connectionTimeout; // get set
 unsigned int connectionAttempts; // get set
 _bstr_t login; // get set
 _bstr_t password; // set
 _bstr_t domain; // get set
};

IRemotePortDevice Properties

Virtual Serial Port Tools Documentation VSPT API

82

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/remote-ports.html

remoteHost

TypeScript
remoteHost: string;

C#
string remoteHost { get; set; }

C++
_bstr_t remoteHost; // get set

Description

Name or address of a remote host this port is associated with.

remotePort

TypeScript
remotePort: number;

C#
uint remotePort { get; set; }

C++
unsigned int remotePort; // get set

Description

Port number on a remote server (specified by remoteHost property) this port is associated with.

connectionTimeout

TypeScript
connectionTimeout: number;

C#
uint connectionTimeout { get; set; }

C++
unsigned int connectionTimeout; // get set

Description

Connection timeout, in milliseconds. When the local port is opened by application, an attempt to
establish connection is made for a given number of milliseconds before returning error code.

connectionAttempts

TypeScript
connectionAttempts: number;

Virtual Serial Port Tools Documentation VSPT API

83

C#
uint connectionAttempts { get; set; }

C++
unsigned int connectionAttempts; // get set

Description

Number of connection attempts before giving up.

login

TypeScript
login: string;

C#
string login { get; set; }

C++
_bstr_t login; // get set

Description

User name for authentication on the remote server.

password

TypeScript
password: string;

C#
string password { set; }

C++
_bstr_t password; // set

Description

User password for authentication on the remote server. For security reasons, this property is write-only.

domain

TypeScript
domain: string;

C#
string domain { get; set; }

C++
_bstr_t domain; // get set

Description

Virtual Serial Port Tools Documentation VSPT API

84

User domain name (optional) for authentication on the remote server.

Example

The following code snippet illustrates the creation and configuration of a remote virtual serial port:

TypeScript
// The following function gets the name of the remote server
// and its port number, as well as user credentials, creates a virtual serial port, connects
// it to the server and returns the port name
function connectPort(remoteHost: string, remotePort: number, login: string,
 password: string, domain: string) : string {
 var library = (IRemotePortLibrary) new ActiveXObject("hhdvspkit.SerialPortLibrary.1");
 var port = library.createRemotePort();

 port.remoteHost = remoteHost;
 port.remotePort = remotePort;
 port.login = login;
 port.password = password;
 port.domain = domain;

 return port.devicePath;
}

IDevice

IRemotePortDescription Interface
TypeScript
interface IRemotePortDescription {
 // Properties
 readonly name: string;
 readonly port: number;
}

C#
public interface IRemotePortDescription
{
 // Properties
 string name { get; }
 uint port { get; }
}

C++
struct IRemotePortDescription : IDispatch
{
 // Properties
 _bstr_t name; // get
 unsigned int port; // get
};

IRemotePortDescription Properties

name

TypeScript
readonly name: string;

C#
string name { get; }

Virtual Serial Port Tools Documentation VSPT API

85

C++
_bstr_t name; // get

Description

Holds the remote port name. This property is read-only.

port

TypeScript
readonly port: number;

C#
uint port { get; }

C++
unsigned int port; // get

Description

Holds the remote port number. This property is read-only.

IPipePortDevice Interface
Description

This interface is implemented by a pipe port device.

Declaration

TypeScript
interface IPipePortDevice extends IDevice {
 // Properties
 readonly pipeName: string;
 readonly numberOfInstances: number;
 readonly outputBufferSize: number;
 readonly inputBufferSize: number;
 readonly defaultTimeout: number;
 readonly securityDescriptor: string;

 // Methods
 configureCreatePipe(pipeName: string,
 numberOfInstances: number,
 outputBufferSize: number,
 inputBufferSize: number,
 defaultTimeout: number): void;
 configureCreatePipe2(pipeName: string,
 securityDescriptor: string,
 numberOfInstances: number,
 outputBufferSize: number,
 inputBufferSize: number,
 defaultTimeout: number): void;
 configureConnectPipe(pipeName: string): void;
}

Virtual Serial Port Tools Documentation VSPT API

86

file:///C:/Users/alexb/AppData/Local/Temp/configuration-utility/creating-pipe-ports.html

C#
public interface IPipePortDevice : IDevice
{
 // Properties
 string pipeName { get; }
 uint numberOfInstances { get; }
 uint outputBufferSize { get; }
 uint inputBufferSize { get; }
 uint defaultTimeout { get; }
 string securityDescriptor { get; }

 // Methods
 void configureCreatePipe(string pipeName,
 uint numberOfInstances,
 uint outputBufferSize,
 uint inputBufferSize,
 uint defaultTimeout);
 void configureCreatePipe2(string pipeName,
 string securityDescriptor,
 uint numberOfInstances,
 uint outputBufferSize,
 uint inputBufferSize,
 uint defaultTimeout);
 void configureConnectPipe(string pipeName);
}

C++
struct IPipePortDevice : IDevice
{
 // Properties
 _bstr_t pipeName; // get
 unsigned numberOfInstances; // get
 unsigned outputBufferSize; // get
 unsigned inputBufferSize; // get
 unsigned defaultTimeout; // get
 _bstr_t securityDescriptor; // get

 // Methods
 HRESULT configureCreatePipe(_bstr_t pipeName,
 unsigned numberOfInstances,
 unsigned outputBufferSize,
 unsigned inputBufferSize,
 unsigned defaultTimeout);
 HRESULT configureCreatePipe2(_bstr_t pipeName,
 _bstr_t securityDescriptor,
 unsigned numberOfInstances,
 unsigned outputBufferSize,
 unsigned inputBufferSize,
 unsigned defaultTimeout);
 HRESULT configureConnectPipe(_bstr_t pipeName);
};

IPipePortDevice Properties

pipeName

TypeScript
readonly pipeName: string;

C#
string pipeName { get; }

C++
_bstr_t pipeName; // get

Description

Virtual Serial Port Tools Documentation VSPT API

87

The full name of the pipe this port is associated with. The pipe name returned is of the form
\\servername\pipe\pipename .

numberOfInstances

TypeScript
readonly numberOfInstances: number;

C#
uint numberOfInstances { get; }

C++
unsigned numberOfInstances; // get

Description

The maximum number of instances that can be created for this pipe. The first instance of the pipe can
specify this value; the same number must be specified for other instances of the pipe. Acceptable
values are in the range 1 through 255. 255 means “unlimited instances”, in this case the number of
pipe instances that can be created is limited only by the availability of system resources.

outputBufferSize

TypeScript
readonly outputBufferSize: number;

C#
uint outputBufferSize { get; }

C++
unsigned outputBufferSize; // get

Description

The number of bytes to reserve for the output buffer. This value is only a hint.

inputBufferSize

TypeScript
readonly inputBufferSize: number;

C#
uint inputBufferSize { get; }

C++
unsigned inputBufferSize; // get

Description

The number of bytes to reserve for the input buffer. This value is only a hint.

Virtual Serial Port Tools Documentation VSPT API

88

defaultTimeout

TypeScript
readonly defaultTimeout: number;

C#
uint defaultTimeout { get; }

C++
unsigned defaultTimeout; // get

Description

The default time-out value, in milliseconds. Each instance of a named pipe must specify the same value.
A value of zero will result in a default time-out of 50 milliseconds.

securityDescriptor

TypeScript
readonly securityDescriptor: string;

C#
string securityDescriptor { get; }

C++
_bstr_t securityDescriptor; // get

Description

Holds the current pipe security descriptor. If empty, default security descriptor grants connection rights
to Everyone .

IPipePortDevice Methods

configureCreatePipe

TypeScript
configureCreatePipe(pipeName: string,
 numberOfInstances: number,
 outputBufferSize: number,
 inputBufferSize: number,
 defaultTimeout: number): void;

C#
void configureCreatePipe(string pipeName,
 uint numberOfInstances,
 uint outputBufferSize,
 uint inputBufferSize,
 uint defaultTimeout);

Virtual Serial Port Tools Documentation VSPT API

89

C++
HRESULT configureCreatePipe(_bstr_t pipeName,
 unsigned numberOfInstances,
 unsigned outputBufferSize,
 unsigned inputBufferSize,
 unsigned defaultTimeout);

Parameters

pipeName

The name of the pipe to create. Pipe name must have the following format: \\.\pipe\pipename
where pipename is a unique pipe name (possibly with path).

numberOfInstances

The maximum number of instances that can be created for this pipe. The first instance of the pipe
can specify this value; the same number must be specified for other instances of the pipe.
Acceptable values are in the range 1 through 255. 255 means “unlimited instances”, in this case
the number of pipe instances that can be created is limited only by the availability of system
resources.

outputBufferSize

The number of bytes to reserve for the output buffer. This value is only a hint.
inputBufferSize

The number of bytes to reserve for the input buffer. This value is only a hint.
defaultTimeout

The default time-out value, in milliseconds. Each instance of a named pipe must specify the same
value. A value of zero will result in a default time-out of 50 milliseconds.

Description

Configures the port to automatically created a given named pipe whenever it is opened by an
application. If an error occurs during creation of the pipe, this error is propagated back to the opener
of the virtual serial port.

configureCreatePipe2

TypeScript
configureCreatePipe2(pipeName: string,
 securityDescriptor: string,
 numberOfInstances: number,
 outputBufferSize: number,
 inputBufferSize: number,
 defaultTimeout: number): void;

C#
void configureCreatePipe2(string pipeName,
 string securityDescriptor,
 uint numberOfInstances,
 uint outputBufferSize,
 uint inputBufferSize,
 uint defaultTimeout);

Virtual Serial Port Tools Documentation VSPT API

90

C++
HRESULT configureCreatePipe2(_bstr_t pipeName,
 _bstr_t securityDescriptor,
 unsigned numberOfInstances,
 unsigned outputBufferSize,
 unsigned inputBufferSize,
 unsigned defaultTimeout);

Parameters

pipeName

The name of the pipe to create. Pipe name must have the following format: \\.\pipe\pipename
where pipename is a unique pipe name (possibly with path).

securityDescriptor

Pipe security descriptor in SDDL format. Security descriptor must specify GENERIC_READ ,
GENERIC_WRITE and SYNCHRONIZE standard rights to groups or users. If empty string is specified, by
default, pipe access is granted to the Everyone group.

numberOfInstances

The maximum number of instances that can be created for this pipe. The first instance of the pipe
can specify this value; the same number must be specified for other instances of the pipe.
Acceptable values are in the range 1 through 255. 255 means “unlimited instances”, in this case
the number of pipe instances that can be created is limited only by the availability of system
resources.

outputBufferSize

The number of bytes to reserve for the output buffer. This value is only a hint.
inputBufferSize

The number of bytes to reserve for the input buffer. This value is only a hint.
defaultTimeout

The default time-out value, in milliseconds. Each instance of a named pipe must specify the same
value. A value of zero will result in a default time-out of 50 milliseconds.

Description

Configures the port to automatically created a given named pipe whenever it is opened by an
application. If an error occurs during creation of the pipe, this error is propagated back to the opener
of the virtual serial port.

configureConnectPipe

TypeScript
configureConnectPipe(pipeName: string): void;

C#
void configureConnectPipe(string pipeName);

C++
HRESULT configureConnectPipe(_bstr_t pipeName);

Parameters

pipeName

The full name of the pipe. It must be a string of the following format: \\servername\pipe\pipename ,

Virtual Serial Port Tools Documentation VSPT API

91

where servername is pipe's server name, DNS name, IP address or any other supported locator and
pipename is a unique pipe name (possibly with a path).

Description

Configures the port to automatically connect to a given pipe whenever it is opened by an application.
If an error occurs during connection to the pipe, this error is propagated back to the opener of the
virtual serial port.

IDevice

IScriptPortDevice Interface
Description

This interface is implemented by a script port device.

Declaration

TypeScript
interface IScriptPortDevice extends IConfigurableDevice {
 // Properties
 readonly scriptPath: string;
 readonly validationErrors: string;
 logPath: string;
 initializationValue: string;

 // Methods
 setScriptFile(path: string): boolean;
 setScriptText(scriptBody: string): boolean;
 setScriptParam(name: string, value: string): void;
}

C#
public interface IScriptPortDevice : IConfigurableDevice
{
 // Properties
 string scriptPath { get; }
 string validationErrors { get; }
 string logPath { get; set; }
 string initializationValue { get; set; }

 // Methods
 bool setScriptFile(string path);
 bool setScriptText(string scriptBody);
 void setScriptParam(string name, string value);
}

C++
struct IScriptPortDevice : IConfigurableDevice
{
 // Properties
 _bstr_t scriptPath; // get
 _bstr_t validationErrors; // get
 _bstr_t logPath; // get set
 _bstr_t initializationValue; // get set

 // Methods
 VARIANT_BOOL setScriptFile(_bstr_t path);
 VARIANT_BOOL setScriptText(_bstr_t scriptBody);
 HRESULT setScriptParam(_bstr_t name, _bstr_t value);
};

IScriptPortDevice Properties

Virtual Serial Port Tools Documentation VSPT API

92

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/script-ports.html

scriptPath

TypeScript
readonly scriptPath: string;

C#
string scriptPath { get; }

C++
_bstr_t scriptPath; // get

Description

A full path to a script file. This property is read-only. To change the port's script, use the setScriptFile
method. If a script has been set with a call to setScriptText method, this property returns an empty
string.

validationErrors

TypeScript
readonly validationErrors: string;

C#
string validationErrors { get; }

C++
_bstr_t validationErrors; // get

Description

This property stores the script validation error, if any. You can query this property after setScriptFile
method returns false .

logPath

TypeScript
logPath: string;

C#
string logPath { get; set; }

C++
_bstr_t logPath; // get set

Description

A full path of a folder used to store script execution logs. By default is set to %TEMP%\vspt_script_logs .

initializationValue

TypeScript
initializationValue: string;

Virtual Serial Port Tools Documentation VSPT API

93

C#
string initializationValue { get; set; }

C++
_bstr_t initializationValue; // get set

Description

A script initialization parameter. Can be any string. Note that the length of this string is limited to 5,000
characters. An attempt to set longer value will result in exception.

IScriptPortDevice Methods

setScriptFile

TypeScript
setScriptFile(path: string): boolean;

C#
bool setScriptFile(string path);

C++
VARIANT_BOOL setScriptFile(_bstr_t path);

Parameters

path

The full path to a script file.

Description

Updates the virtual port's script. Library compiles and validates the script and stores its contents
internally. The script port will not read the original file after this method returns successfully. This is
done for security reasons: an attempt to modify the script after the port has been created will not lead
to undesired updated behavior.

The read-only scriptPath property will hold the path to the original script file for reference.

The method returns true on success and false if script compilation and validation fails. In the latter
case, more information is available by querying the validationErrors property. This method may also
throw an exception if script file does not contain required elements.

setScriptText

TypeScript
setScriptText(scriptBody: string): boolean;

C#
bool setScriptText(string scriptBody);

C++
VARIANT_BOOL setScriptText(_bstr_t scriptBody);

Virtual Serial Port Tools Documentation VSPT API

94

Parameters

scriptBody

The device script contents.

Description

Updates the virtual port's script. Library compiles and validates the script and stores its contents
internally.

The read-only scriptPath property will be set to an empty string after calling this method.

The method returns true on success and false if script compilation and validation fails. In the latter
case, more information is available by querying the validationErrors property. This method may also
throw an exception if script file does not contain required elements.

setScriptParam

TypeScript
setScriptParam(name: string, value: string): void;

C#
void setScriptParam(string name, string value);

C++
HRESULT setScriptParam(_bstr_t name, _bstr_t value);

Parameters

name

Custom parameter name.
value

Custom parameter value.

Description

This method passes a custom parameter (specified by its name and value) to a port's script. The port
must be opened by some application in order for this method to succeed. If the port is not opened, an
exception is thrown. Otherwise, script's IScriptDevice.setParam method is called. If this method is not
defined or throws an exception, setScriptParam method also throws an exception.

It is up to the port's script to interpret the meaning of custom parameter's name and value.

There is an alternative way of setting a custom script parameter: an application that opens a virtual
script port may send a custom IOCTL_SCRIPTPORT_SET_PARAM device I/O control request.

IConfigurableDevice

ITimeouts Interface
Description

This interface is implemented by a timeouts override object. Values stored in this object are documented
in the Windows Documentation. IConfigurableDevice.timeouts property is used to set or retrieve this
object. A new object with specified values may also be created using the

Virtual Serial Port Tools Documentation VSPT API

95

file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/port-api/iscriptdevice.html#setParam
file:///C:/Users/alexb/AppData/Local/Temp/device-script-api/ioctl_scriptport_set_param.html
https://docs.microsoft.com/en-us/windows/win32/api/winbase/ns-winbase-commtimeouts
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/iconfigurabledevice.html#timeouts

ISerialPortLibrary.createTimeoutsObject method.

Declaration

TypeScript
interface ITimeouts {
 // Properties
 readIntervalTimeout: number;
 readTotalTimeoutMultiplier: number;
 readTotalTimeoutConstant: number;
 writeTotalTimeoutMultiplier: number;
 writeTotalTimeoutConstant: number;
}

C#
public interface ITimeouts
{
 // Properties
 uint readIntervalTimeout { get; set; }
 uint readTotalTimeoutMultiplier { get; set; }
 uint readTotalTimeoutConstant { get; set; }
 uint writeTotalTimeoutMultiplier { get; set; }
 uint writeTotalTimeoutConstant { get; set; }
}

C++
struct ITimeouts : IDispatch
{
 // Properties
 unsigned readIntervalTimeout; // get set
 unsigned readTotalTimeoutMultiplier; // get set
 unsigned readTotalTimeoutConstant; // get set
 unsigned writeTotalTimeoutMultiplier; // get set
 unsigned writeTotalTimeoutConstant; // get set
};

ITimeouts Properties

readIntervalTimeout

TypeScript
readIntervalTimeout: number;

C#
uint readIntervalTimeout { get; set; }

C++
unsigned readIntervalTimeout; // get set

Description

The maximum time allowed to elapse before the arrival of the next byte on the communications line, in
milliseconds. If the interval between the arrival of any two bytes exceeds this amount, the ReadFile
operation is completed and any buffered data is returned. A value of zero indicates that interval time-
outs are not used.

A value of 4294967295 (or -1), combined with zero values for both the readTotalTimeoutConstant and
readTotalTimeoutMultiplier members, specifies that the read operation is to return immediately with
the bytes that have already been received, even if no bytes have been received.

Virtual Serial Port Tools Documentation VSPT API

96

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/iserialportlibrary.html#createTimeoutsObject

readTotalTimeoutMultiplier

TypeScript
readTotalTimeoutMultiplier: number;

C#
uint readTotalTimeoutMultiplier { get; set; }

C++
unsigned readTotalTimeoutMultiplier; // get set

Description

The multiplier used to calculate the total time-out period for read operations, in milliseconds. For each
read operation, this value is multiplied by the requested number of bytes to be read.

readTotalTimeoutConstant

TypeScript
readTotalTimeoutConstant: number;

C#
uint readTotalTimeoutConstant { get; set; }

C++
unsigned readTotalTimeoutConstant; // get set

Description

A constant used to calculate the total time-out period for read operations, in milliseconds. For each
read operation, this value is added to the product of the readTotalTimeoutMultiplier member and the
requested number of bytes.

A value of zero for both the readTotalTimeoutMultiplier and readTotalTimeoutConstant members
indicates that total time-outs are not used for read operations.

writeTotalTimeoutMultiplier

TypeScript
writeTotalTimeoutMultiplier: number;

C#
uint writeTotalTimeoutMultiplier { get; set; }

C++
unsigned writeTotalTimeoutMultiplier; // get set

Description

The multiplier used to calculate the total time-out period for write operations, in milliseconds. For each
write operation, this value is multiplied by the number of bytes to be written.

Virtual Serial Port Tools Documentation VSPT API

97

writeTotalTimeoutConstant

TypeScript
writeTotalTimeoutConstant: number;

C#
uint writeTotalTimeoutConstant { get; set; }

C++
unsigned writeTotalTimeoutConstant; // get set

Description

A constant used to calculate the total time-out period for write operations, in milliseconds. For each
write operation, this value is added to the product of the writeTotalTimeoutMultiplier member and
the number of bytes to be written.

A value of zero for both the writeTotalTimeoutMultiplier and writeTotalTimeoutConstant members
indicates that total time-outs are not used for write operations.

IOpeningInfo Interface
Description

An object implementing this interface is obtained through the IDevice.openingInfo property. This object
properties can be queried to get information about the process that opened the virtual serial port and
port opening parameters.

Declaration

TypeScript
interface IOpeningInfo {
 // Properties
 readonly baudRate: number;
 readonly byteSize: number;
 readonly parity: PortParity;
 readonly stopBits: PortStopBits;
 readonly processId: number;
 readonly processName: string;
}

C#
public interface IOpeningInfo
{
 // Properties
 uint baudRate { get; }
 uint byteSize { get; }
 PortParity parity { get; }
 PortStopBits stopBits { get; }
 uint processId { get; }
 string processName { get; }
}

Virtual Serial Port Tools Documentation VSPT API

98

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/idevice.html#openingInfo

C++
struct IOpeningInfo : IDispatch
{
 // Properties
 unsigned baudRate; // get
 unsigned byteSize; // get
 PortParity parity; // get
 PortStopBits stopBits; // get
 unsigned processId; // get
 _bstr_t processName; // get
};

IOpeningInfo Properties

baudRate

TypeScript
readonly baudRate: number;

C#
uint baudRate { get; }

C++
unsigned baudRate; // get

Description

Baud rate, in bits per second.

byteSize

TypeScript
readonly byteSize: number;

C#
uint byteSize { get; }

C++
unsigned byteSize; // get

Description

Byte size, in bits.

parity

TypeScript
readonly parity: PortParity;

C#
PortParity parity { get; }

C++
PortParity parity; // get

Virtual Serial Port Tools Documentation VSPT API

99

Description

Parity value.

stopBits

TypeScript
readonly stopBits: PortStopBits;

C#
PortStopBits stopBits { get; }

C++
PortStopBits stopBits; // get

Description

Stop bits.

processId

TypeScript
readonly processId: number;

C#
uint processId { get; }

C++
unsigned processId; // get

Description

ID of the process that opened the port.

processName

TypeScript
readonly processName: string;

C#
string processName { get; }

C++
_bstr_t processName; // get

Description

Full file name path of the process that opened the port.

PortParity PortStopBits

SerialPortType Enumeration

Virtual Serial Port Tools Documentation VSPT API

100

Symbol Value Description
Remote 0 Specifies remote port device.
Shared 1 Specifies shared port device.
Alias 2 Specifies alias port device.
Bridge 3 Specifies bridge port device.
Pipe 4 Specifies pipe port device.
Tcp 5 Specifies TCP/IP port device.
Script 6 Specifies Script port device.

PortParity Enumeration
Description

Supported parity constants.

Symbol Value Description
NoParity 0 No parity.
OddParity 1 Odd parity.
EvenParity 2 Even parity.
MarkParity 3 Mark parity.
SpaceParity 4 Space parity.

PortStopBits Enumeration
Description

Supported stop bits constants.

Symbol Value Description
One 0 1 stop bit.
OneAndHalf 1 1.5 stop bits.
Two 2 2 stop bits.

PortFlowControl Enumeration
Description

Supported flow control constants.

Symbol Value Description
NotSet 0 Specific flow control is not enforced.
None 1 None flow control is enforced.
Software 2 Software (XON/XOFF) flow control is enforced.
Hardware 3 Hardware flow control is enforced.

DestinationPins Enumeration
Description

Destination pins for custom pin-out. See the Bridge Pin-Outs section for additional information.

Virtual Serial Port Tools Documentation VSPT API

101

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/virtual-bridges/pinouts.html

Symbol Value Description

NotConnected 0 The given pin is not connected to any other pins.
Local_DTR 0x1 The given pin is connected to local DTR pin.
Local_DTS 0x2 The given pin is connected to local DTS pin.
Local_DCD 0x4 The given pin is connected to local DCD pin.
Local_RTS 0x8 The given pin is connected to local RTS pin.
Local_CTS 0x10 The given pin is connected to local CTS pin.
Local_RI 0x20 The given pin is connected to local RI pin.
Remote_DTR 0x100 The given pin is connected to remote DTR pin.
Remote_DTS 0x200 The given pin is connected to remote DTS pin.
Remote_DCD 0x400 The given pin is connected to remote DCD pin.
Remote_RTS 0x800 The given pin is connected to remote RTS pin.
Remote_CTS 0x1000 The given pin is connected to remote CTS pin.
Remote_RI 0x2000 The given pin is connected to remote RI pin.

CompatibilityFlags Enumeration
Description

A set of compatibility flags that change the behavior of virtual serial ports to increase compatibility with
legacy software.

Symbol Value Description
IgnoreInvalidSpecialChars 1 Virtual serial ports must silently ignore invalid

special characters set by application. By default,
when this compatibility flag is not set, virtual
serial ports fail requests that attempt to set
invalid combination of special characters, as
required by specification.

IgnoreTxClearPurgeFlag 2 Virtual serial devices will ignore serial purge
requests with TXCLEAR flag. This prevents
unwanted behavior if the request is
erroneously sent by application while there is
still data in transmit queue. Currently applies to
local bridges only.

TcpPortProtocol Enumeration
Description

Specify the protocol for TCP/IP Port. See the ITcpPortDevice.protocol property for more information.

Symbol Value Description
Rfc2217 0 The protocol corresponds to RFC2217 standard.
Raw 0x1 The protocol is raw.

Virtual Serial Port Tools Documentation VSPT API

102

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/tcp-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/itcpportdevice.html#protocol

Device Script API
This section provides detailed API documentation for a device script, a script that powers up a script port
virtual serial device.

Device Script API is fully asynchronous, most methods and some properties return promise objects.
Promises are resolved when appropriate events happen, make sure your code properly work with
asynchronous calls. It is recommended to mark your functions that call those methods with async
keyword and use the await operator. A callback model is also supported, you can query continuations
using the Promise.then method.

NOTE
This script execution context is created after the port is opened and is destroyed as soon as it is
closed. Any global variables you create will only live this long.
That is, you cannot store any state between port opening attempts. However, the execution context
is guaranteed to exist until the port is closed by the application. Anyway, prefer storing any state in
the created device script object, not on a global scope.

Global Object

Methods and properties defined on a Global object are described in the IGlobals topic.

port property returns a reference to a global Port API IPort object. It is used by a device script to
communicate with a virtual serial port device driver.
fs property returns a reference to a global IFileManager object. Device script uses this object to
access local file system.
net property returns a reference to a global INetworkManager object. Device script uses this object
to create TCP and UDP sockets and communicate over the network.
http property returns a reference to a global IHttpClient object. Device script uses this object to
make HTTP requests.
log method is used to perform a diagnostic output.
delay method produces a promise that is automatically resolved after a given amount of time.
async and cancelAsync methods allow device script to schedule delayed and optionally repetitive
continuations.

File System Object

Global file system object (implemented as IFileManager interface) provides convenient access to the
local file system, allowing the device script to read and store data in files, create or delete files and
folders as well as enumerate the contents of a folder.

Create and delete folders using the IFileManager.createFolder and IFileManager.deleteFolder
methods.
Create or open files using the IFileManager.createFile method.
Delete files with IFileManager.deleteFile method.
Copy or move(rename) files using the IFileManager.copyFile and IFileManager.moveFile methods.
Enumerate contents of a folder using the IFileManager.enumFiles method.
Load a text file with IFileManager.loadTextFile method.
Read/write data from/to a file using the IFile.read and IFile.write methods.

Network Object

The network object (implemented as INetworkManager interface) provides a way to create TCP and UDP
sockets, connect or bind them and perform a data transfer over the network.

Virtual Serial Port Tools Documentation Device Script API

103

file:///C:/Users/alexb/AppData/Local/Temp/supported-configurations/script-ports.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/iglobals.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-api/iport.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/inetworkmanager.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/http-api/ihttpclient.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html#createFolder
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html#deleteFolder
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html#createFile
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html#deleteFile
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html#copyFile
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html#moveFile
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html#enumFiles
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifilemanager.html#loadTextFile
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifile.html#read
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/file-system-api/ifile.html#write
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/inetworkmanager.html

Create TCP and UDP sockets using the INetworkManager.createTcpSocket and
INetworkManager.createUdpSocket methods.
Create TCP listener object using the INetworkManager.createTcpListener method.
Connect a socket using the ISocket.connect method, or bind it using the IUdpSocket.bind method.
Perform a data transfer using the ISocket.send and ISocket.receive methods.

HTTP Object

The Http object (implemented as IHttpClient interface) provides the ability for a device script to make
HTTP requests to query and control remote HTTP resources.

Build and send an HTTP request using the IHttpClient.request method.
Alternatively, use the “shortcut” methods, such as IHttpClient.get, IHttpClient.post,
IHttpClient.getString or IHttpClient.getBlob.

Global Interface
Description

This is a “virtual” interface. All its properties and methods are actually available on a Global JavaScript
object.

Declaration

TypeScript
interface IGlobals {
 // Properties
 readonly port: Port.IPort;
 readonly fs: FS.IFileManager;
 readonly net: Net.INetworkManager;
 readonly http: Http.IHttpClient;

 // Methods
 log(value: any): void;
 delay(ms: number): Promise<void>;
 async(handler: () => void, ms: number, repetitive?: boolean): number;
 cancelAsync(handlerId: number): void;
 createDevice(initializationValue?: string): Port.IScriptDevice;
 createDeviceAsync(initializationValue?: string): Promise<Port.IScriptDevice>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IGlobals Properties

port

TypeScript
readonly port: Port.IPort;

C#
// This property is not available in managed environment

Virtual Serial Port Tools Documentation Device Script API

104

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/inetworkmanager.html#createTcpSocket
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/inetworkmanager.html#createUdpSocket
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/inetworkmanager.html#createTcpListener
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/isocket.html#connect
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/iudpsocket.html#bind
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/isocket.html#send
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/network-api/isocket.html#receive
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/http-api/ihttpclient.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/http-api/ihttpclient.html#request
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/http-api/ihttpclient.html#get
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/http-api/ihttpclient.html#post
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/http-api/ihttpclient.html#getString
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/http-api/ihttpclient.html#getBlob

C++
// This property is not available in native environment

Description

A reference to a global Port API object. Use this object to communicate with a virtual script serial port
device driver.

fs

TypeScript
readonly fs: FS.IFileManager;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

A reference to a global FS.IFileManager object. Device script uses this object to access local file
system.

net

TypeScript
readonly net: Net.INetworkManager;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

A reference to a global Net.INetworkManager object. Device script uses this object to create TCP and
UDP sockets and use them to communicate over the network.

http

TypeScript
readonly http: Http.IHttpClient;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Virtual Serial Port Tools Documentation Device Script API

105

A reference to a global Http.IHttpClient object. Device script uses this object to make HTTP requests.

IGlobals Methods

log

TypeScript
log(value: any): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

value

An object to dump to a log file. A passed object is first converted to a string, it is not a string
already.

Description

Dump a given value to a string.

delay

TypeScript
delay(ms: number): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

ms

A number of milliseconds to wait until completing the returned promise object.

Description

Returns a promise that gets completed in a given number of milliseconds.

Example

Using await :

async function test() {
 // ...
 await delay(500);
 // ...
}

Virtual Serial Port Tools Documentation Device Script API

106

Using continuations:

delay(500).then(() => { ... });

async

TypeScript
async(handler: () => void, ms: number, repetitive?: boolean): number;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

handler

JavaScript function that takes no parameters and returns nothing. This function is invoked after ms
milliseconds once or until cancelled, depending on the repetitive parameter.

ms

A number of milliseconds to wait until calling the passed function.
repetitive

An optional boolean that tells if async handler should be called once (repetitive is omitted or
equals to false) or until cancelled (repetitive equals to true).

Return Value

Returns an asynchronous function identifier. You may pass this identifier to cancelAsync method to
cancel delayed function.

Description

Schedules a passed JavaScript function for delayed execution. A caller may optionally specify if the
async function should be repetitive.

cancelAsync

TypeScript
cancelAsync(handlerId: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

handlerId

Async handler identifier to cancel.

Virtual Serial Port Tools Documentation Device Script API

107

Description

Cancels pending async handler.

createDevice

TypeScript
createDevice(initializationValue?: string): Port.IScriptDevice;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

initializationValue

An optional initialization value, set using a IScriptPortDevice.initializationValue property.

Return Value

A reference to a created port device object.

Description

This method must be implemented by a device script. It is invoked each time the port is opened by
application. It can perform an optional initialization and must create an instance of a class that derives
the Port.IScriptDevice interface and return it.

Either this global function or createDeviceAsync must be defined, otherwise the script will fail
validation.

Define this function if you don't require asynchronous initialization.

createDeviceAsync

TypeScript
createDeviceAsync(initializationValue?: string): Promise<Port.IScriptDevice>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

initializationValue

An optional initialization value, set using a IScriptPortDevice.initializationValue property.

Return Value

A reference to a created port device object.

Virtual Serial Port Tools Documentation Device Script API

108

file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#initializationValue
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-api/iscriptdevice.html
file:///C:/Users/alexb/AppData/Local/Temp/vspt-api/iscriptportdevice.html#initializationValue

Description

This method must be implemented by a device script. It is invoked each time the port is opened by
application. It can perform an optional initialization and must create an instance of a class that derives
the Port.IScriptDevice interface and return it.

Either this global function or createDevice must be defined, otherwise the script will fail validation.

Define this function if you require asynchronous initialization.

Port API
IPort Interface

Description

This interface is implemented by virtual serial port driver and represents a virtual serial port device
opened by application. It is available as a global port object.

Declaration

TypeScript
interface IPort {

 // Methods
 provideReceivedData(text: string, encoding?: Common.Encoding | number): void;
 provideReceivedData(byte: number): void;
 provideReceivedData(bytes: number[] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer |
DataView): void;
 provideReceivedData(sendAs: Port.WriteAs,
 data: number[] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView,
 bigEndian?: boolean): void;
 getSentData(maxBytes?: number): Promise<Uint8Array>;
 setError(errorCode: number): void;
 setEventMask(mask: Port.EventMask): void;
 clearEventMask(): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IPort Methods

provideReceivedData

TypeScript
provideReceivedData(text: string, encoding?: Common.Encoding | number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Virtual Serial Port Tools Documentation Device Script API

109

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-api/iscriptdevice.html
file:///C:/Users/alexb/AppData/Local/Temp/iglobals.html#port

Parameters

text

A string to put into a port's input queue.
encoding

String text encoding. Can be either a member of Common.Encoding enumeration or a numeric
Windows code page identifier. If omitted, defaults to UTF8 encoding.

Description

Put a given string into port's input queue. An optional encoding parameter, if specified, tells how the
port should encode a passed string.

provideReceivedData

TypeScript
provideReceivedData(byte: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

byte

A single byte to put into a port's input queue.

Description

Put a single byte into port's input queue.

provideReceivedData

TypeScript
provideReceivedData(bytes: number[] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer |
DataView): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

bytes

An array, typed array, array buffer or DataView object to put into port's input queue.

Description

Put a given data array into port's input queue.

Virtual Serial Port Tools Documentation Device Script API

110

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/common.encoding.html

provideReceivedData

TypeScript
provideReceivedData(sendAs: Port.WriteAs,
 data: number[] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView,
 bigEndian?: boolean): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

sendAs

How to interpret the passed array.
data

An array, typed array, array buffer or DataView object to put into port's input queue. sendAs
parameter is used to interpret and possibly convert the passed data array.

bigEndian

If sendAs parameter describes multi-byte sequence, treat is as little-endian (bigEndian equals
false or omitted) or as big-endian (bigEndian equals true).

Description

Put a given data array into port's input queue.

getSentData

TypeScript
getSentData(maxBytes?: number): Promise<Uint8Array>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

maxBytes

An optional maximum size of the returned buffer.

Return Value

A promise that is resolved with a copy of the data from the output queue.

Description

Request the data that have been put into the port's output queue by the application. This method must
be used by a device script utilizing a pull model.

Virtual Serial Port Tools Documentation Device Script API

111

file:///C:/Users/alexb/AppData/Local/supported-configurations/script-ports.html#pull-model

setError

TypeScript
setError(errorCode: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

errorCode

A Win32 error code.

Description

Set the port into the error state. Any pending read sent by application is immediately completed with a
passed error code.

setEventMask

TypeScript
setEventMask(mask: Port.EventMask): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

mask

Event mask to set. Can be a combination of flags in Port.EventMask enumeration.

Description

Set the port event mask.

clearEventMask

TypeScript
clearEventMask(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Virtual Serial Port Tools Documentation Device Script API

112

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/eventmask.html

Description

Clear the port event mask.

IScriptDevice Interface

Description

This interface must be implemented by a custom device script.

NOTE
This interface consists of optional members. A device script utilizing a pull model and not requiring
custom parameter support will actually “inherit” none of this interface members.

Declaration

TypeScript
interface IScriptDevice {

 // Methods
 onSend(data: Uint8Array): Promise<void>;
 setParam(name: string, value: string): void;
}

C#
public interface IScriptDevice
{

 // Methods
}

C++
struct IScriptDevice : IDispatch
{

 // Methods
};

IScriptDevice Methods

onSend

TypeScript
onSend(data: Uint8Array): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

data

Virtual Serial Port Tools Documentation Device Script API

113

file:///C:/Users/alexb/AppData/Local/supported-configurations/script-ports.html#pull-model

A copy of the data from the port's output queue.

Description

This optional method must be implemented by a device script utilizing a push model. Application's
write request will not be completed until the promise returned by this method is resolved.

setParam

TypeScript
setParam(name: string, value: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

A custom parameter name.
value

A custom parameter value.

Description

This optional method must be implemented by a device script that wants to provide external code a
way to customize its behavior.

An external caller may either use the IScriptPortDevice.setScriptParam method or send a custom
IOCTL_SCRIPTPORT_SET_PARAM I/O control request to an opened port.

Common.Encoding Enumeration

Description

Predefined text encodings.

Symbol Value Description
Utf8 -1 UTF8 encoding.
Ascii -2 ASCII (7-bit) encoding.
Utf16LE -3 UTF16 little-endian encoding.
Utf16BE -4 UTF16 little-endian encoding.

Port.WriteAs Enumeration

Description

Data encoding override.

Virtual Serial Port Tools Documentation Device Script API

114

file:///C:/Users/alexb/AppData/Local/supported-configurations/script-ports.html#push-model
file:///C:/Users/alexb/AppData/Local/vspt-api/iscriptportdevice.html#setScriptParam
file:///C:/Users/alexb/AppData/Local/Temp/ioctl_scriptport_set_param.html

Symbol Value Description
Bytes 0 Encode data array as byte array
Words 1 Encode data array as word array
DoubleWords 2 Encode data array as double word array

Port.EventMask Enumeration

Description

A serial port event mask.

Symbol Value Description
Break 0x0040 A break was detected on input
CTS 0x0008 The CTS (clear-to-send) signal changed state
DSR 0x0010 The DSR (data-set-ready) signal changed state
Error 0x0080 A line - status error occurred.Line - status errors are CE_FRAME ,

CE_OVERRUN , and CE_RXPARITY
Ring 0x0100 A ring indicator was detected
RLSD 0x0020 The RLSD (receive-line-signal-detect) signal changed state
RxChar 0x0001 A character was received and placed in the input buffer
RxFlag 0x0002 The event character was received and placed in the input buffer.
TxEmpty 0x0004 The last character in the output buffer was sent

File system API
IFileManager Interface

Description

This interface is implemented by File Manager object. It provides basic methods to work with a file
system, like opening or creating files and folders, deleting files and folders and enumerating the
contents of a folder.

Declaration

TypeScript
interface IFileManager {
 // Properties
 readonly tempFolder: string;
 readonly windowsFolder: string;
 readonly systemFolder: string;
 readonly programDataFolder: string;

 // Methods
 createFile(path: string,
 openMode: FS.OpenMode,
 access: FS.Access,
 share?: FS.Share): IFile;
 deleteFile(path: string): void;
 enumFiles(folder: string, mask?: string): Promise<string[]>;
 copyFile(source: string, destination: string, overwrite?: boolean): Promise<void>;
 moveFile(source: string, destination: string, overwrite?: boolean): Promise<void>;
 createFolder(path: string): void;
 deleteFolder(path: string): void;
 loadTextFile(path: string, utf8?: boolean): string;
}

Virtual Serial Port Tools Documentation Device Script API

115

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IFileManager Properties

tempFolder

TypeScript
readonly tempFolder: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Get the system temporary folder. Usually equals to c:\Windows\TEMP .

windowsFolder

TypeScript
readonly windowsFolder: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Get the OS root folder. Usually equals to c:\Windows .

systemFolder

TypeScript
readonly systemFolder: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Virtual Serial Port Tools Documentation Device Script API

116

Get the OS system folder. Usually equals to c:\Windows\System32 .

programDataFolder

TypeScript
readonly programDataFolder: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Get the ProgramData folder. Usually equals to c:\ProgramData .

IFileManager Methods

createFile

TypeScript
createFile(path: string,
 openMode: FS.OpenMode,
 access: FS.Access,
 share?: FS.Share): IFile;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

path

Full path to the file being opened or created.
openMode

File opening mode. See FS.OpenMode topic for more information.
access

File access mode. A file may be opened for reading, writing or both reading and writing.
share

File sharing mode. Tells the file system how it should handle other process attempts to open a file.
If omitted, equals to FS.Share.Exclusive .

Return Value

An opened file object.

Description

Virtual Serial Port Tools Documentation Device Script API

117

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/fs.openmode.html

Creates or opens a file.

Example

Open an existing file for reading

TypeScript
var file = fileManager.createFile("c:\\temp\\file.txt", FS.OpenMode.OpenExisting,
FS.Access.Read, FS.Share.Read);

deleteFile

TypeScript
deleteFile(path: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

path

Full path to the file to delete.

Description

Deletes a given file.

enumFiles

TypeScript
enumFiles(folder: string, mask?: string): Promise<string[]>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

folder

Full path to the folder the caller wants to enumerate.
mask

An optional mask to match files during enumeration. If omitted, equals to "*".

Description

Enumerate files in a given folder. The method executes asynchronously and returns a list of file names
that match a given mask.

Virtual Serial Port Tools Documentation Device Script API

118

Example

Enumerating files in a folder

TypeScript
var files = await fileManager.enumFiles("c:\\temp", "*.txt");

copyFile

TypeScript
copyFile(source: string, destination: string, overwrite?: boolean): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

source

Full path to the source file.
destination

Full path to the destination file.
overwrite

An optional parameter that tells if the destination file should be overridden if it exists. If omitted,
defaults to false .

Description

Copies a source file to destination. The method executes asynchronously.

Example

Copying a file

TypeScript
await fileManager.copyFile(source, destination);

moveFile

TypeScript
moveFile(source: string, destination: string, overwrite?: boolean): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Virtual Serial Port Tools Documentation Device Script API

119

source

Full path to the source file.
destination

Full path to the destination file.
overwrite

An optional parameter that tells if the destination file should be overridden if it exists. If omitted,
defaults to false .

Description

Moves a source file to destination or renames a file. The method executes asynchronously.

Example

Renaming a file

TypeScript
await fileManager.moveFile(source, destination);

createFolder

TypeScript
createFolder(path: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

path

Full path to the folder being created.

Description

Creates a folder. If one or more intermediate folders in a given path do not exist, they are also created
by this function.

deleteFolder

TypeScript
deleteFolder(path: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Virtual Serial Port Tools Documentation Device Script API

120

path

Full path to the folder being deleted.

Description

Deletes a given folder. A folder must be empty to be successfully deleted.

loadTextFile

TypeScript
loadTextFile(path: string, utf8?: boolean): string;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

path

Full path to a file.
utf8

Optional flag to force the file to be treated as UTF8-encoded. Defaults to true if omitted.

Description

This method attempts to load and parse a text file. It tries to automatically determine the text file
encoding by analyzing its structure and presence of BOM at the beginning of a file.

IFile Interface

Description

This interface is implemented by a file object. File objects are obtained by calling a
IFileManager.createFile method.

Declaration

TypeScript
interface IFile {
 // Properties
 currentPosition: number;
 readonly size: number;
 readonly isOpen: boolean;

 // Methods
 read(size: number, position?: number): Promise<Uint8Array>;
 write(data: number[] | Uint8Array | DataView | ArrayBuffer, position?: number):
Promise<number>;
 setEnd(): void;
 close(): void;
}

C#
// This interface is not available in managed environment

Virtual Serial Port Tools Documentation Device Script API

121

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/ifilemanager.html#createFile

C++
// This interface is not available in native environment

IFile Properties

currentPosition

TypeScript
currentPosition: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

This property represents the current file's position.

size

TypeScript
readonly size: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

This property holds the current file's size.

isOpen

TypeScript
readonly isOpen: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

This property evaluates to false after calling the IFile.close method.

Virtual Serial Port Tools Documentation Device Script API

122

IFile Methods

read

TypeScript
read(size: number, position?: number): Promise<Uint8Array>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

size

The number of bytes to read.
position

Optional starting offset for the operation. If omitted, the file's current position is used (and later
updated).

Return Value

Data read from a file.

Description

Reads data from a file. This method executes asynchronously.

Example

Reading from a file

TypeScript
var data = await file.read(4096);

write

TypeScript
write(data: number[] | Uint8Array | DataView | ArrayBuffer, position?: number):
Promise<number>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

data

The data to be written.
position

Virtual Serial Port Tools Documentation Device Script API

123

Optional starting offset for the operation. If omitted, the file's current position is used (and later
updated).

Return Value

The number of bytes written.

Description

Writes data to a file. This method executes asynchronously.

Example

Writing to a file

TypeScript
// Copy first 4KB of file to second 4KB

var data = await file.read(4096, 0);
await file.write(data, 4096);

setEnd

TypeScript
setEnd(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Changes the size of a file to be the same as IFile.currentPosition.

close

TypeScript
close(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Closes the file. File object may not be used after calling this method. Only IFile.isOpen property may
safely be used after calling this method.

FS.OpenMode Enumeration

Description

Virtual Serial Port Tools Documentation Device Script API

124

File opening mode constants. See IFileManager.createFile for more information.

Symbol Value Description
CreateNew 1 Creates a new file, only if it does not already exist. If the

specified file exists, the function fails with “File Exists”
exception. If the specified file does not exist and is a valid
path to a writable location, a new file is created.

CreateAlways 2 Creates a new file, always. If the specified file exists and is
writable, the function overwrites the file. If the specified
file does not exist and is a valid path, a new file is
created.

OpenExisting 3 Opens a file or device, only if it exists. If the specified file
does not exist, the function fails with “File Not Found”
exception.

OpenAlways 4 Opens a file, always. If the specified file does not exist
and is a valid path to a writable location, the function
creates a file.

TruncateExisting 5 Opens a file and truncates it so that its size is zero bytes,
only if it exists. If the specified file does not exist, the
function fails with “File Not Found” exception. The caller
must open the file with the FS.Access.Write access
specifier.

FS.Access Enumeration

Description

File access rights constants. See IFileManager.createFile function for more information.

Symbol Value Description
Read 1 Opens a file for reading.
Write 2 Opens a file for writing.
ReadWrite 3 Opens a file both for reading and writing.

FS.Share Enumeration

Description

File sharing rights. See IFileManager.createFile function for more information.

Symbol Value Description
Exclusive 0 Opens a file for exclusive access.
Read 1 Allows other processes to read from a file.
Write 2 Allows other processes to write to a file.
Delete 4 Allows other processes to delete a file.

Network API
INetworkManager Interface

Description

Virtual Serial Port Tools Documentation Device Script API

125

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/ifilemanager.html#createFile
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/ifilemanager.html#createFile

This interface is implemented by a Network manager object. A reference to this object is obtained using
the global net property.

Declaration

TypeScript
interface INetworkManager {

 // Methods
 createTcpSocket(bufferSize?: number): ITcpSocket;
 createUdpSocket(): IUdpSocket;
 createTcpListener(bufferSize?: number): ITcpListener;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

INetworkManager Methods

createTcpSocket

TypeScript
createTcpSocket(bufferSize?: number): ITcpSocket;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

bufferSize

Optional size of the socket buffer, in bytes. If omitted, 512 KB buffer is used.

Return Value

Reference to a created TCP socket object.

Description

Create a TCP socket.

createUdpSocket

TypeScript
createUdpSocket(): IUdpSocket;

C#
// This method is not available in managed environment

Virtual Serial Port Tools Documentation Device Script API

126

file:///C:/Users/alexb/AppData/Local/Temp/iglobals.html#net

C++
// This method is not available in native environment

Return Value

Reference to a created UDP socket object.

Description

Create an UDP socket.

WARNING
This method is not available on Windows 7 and throws an exception.

createTcpListener

TypeScript
createTcpListener(bufferSize?: number): ITcpListener;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

bufferSize

Optional size of the socket buffer, in bytes. If omitted, 512 KB buffer is used.

Return Value

A reference to a create TCP listener object.

Description

Create a TCP listener. A listener may be used to wait for incoming TCP connections.

ITcpSocket Interface

Description

This interface is implemented by a TCP socket. Call the INetworkManager.createTcpSocket method to
create a TCP socket.

This interface extends the Net.ISocket and does not add any additional properties or methods.

Declaration

TypeScript
interface ITcpSocket extends Net.ISocket {
}

Virtual Serial Port Tools Documentation Device Script API

127

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/inetworkmanager.html#createTcpSocket
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/isocket.html

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IUdpSocket Interface

Description

This interface is implemented by an UDP socket. Call the INetworkManager.createUdpSocket method to
create an UDP socket.

WARNING
This functionality is not available on Windows 7. Attempt to create a UDP socket with a call to
INetworkManager.createUdpSocket method will fail.

Declaration

TypeScript
interface IUdpSocket extends Net.ISocket {

 // Methods
 bind(host: string, port: number): Promise<void>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IUdpSocket Methods

bind

TypeScript
bind(host: string, port: number): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

host

Host name.
port

UDP port number.

Virtual Serial Port Tools Documentation Device Script API

128

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/inetworkmanager.html#createUdpSocket
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/inetworkmanager.html#createUdpSocket

Description

Bind an UDP socket.

ISocket Interface

Description

A base interface for both ITcpSocket and IUdpSocket objects.

Declaration

TypeScript
interface ISocket {

 // Methods
 connect(host: string, port: string): Promise<void>;
 close(): void;
 send(text: string, encoding: Common.Encoding | number): Promise<number>;
 send(byte: number): Promise<number>;
 send(bytes: number[] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView):
Promise<number>;
 receive(): Promise<Uint8Array>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ISocket Methods

connect

TypeScript
connect(host: string, port: string): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

host

A host name
port

TCP/UDP port

Description

Connects the socket to the remote endpoint.

Virtual Serial Port Tools Documentation Device Script API

129

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/itcpsocket.html
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/iudpsocket.html

close

TypeScript
close(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Closes the active connection.

send

TypeScript
send(text: string, encoding: Common.Encoding | number): Promise<number>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

text :

encoding

An optional encoding or Windows code page to use. If omitted, equals to Common.Encoding.Utf8 .

Return Value

The number of bytes sent to the network.

Description

A string to send

Send the given string encoded using the specified encoding to the socket.

send

TypeScript
send(byte: number): Promise<number>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Virtual Serial Port Tools Documentation Device Script API

130

Parameters

byte

A single byte to send

Return Value

The number of bytes sent to the network.

Description

Send a single byte to the network.

send

TypeScript
send(bytes: number[] | Uint8Array | Uint16Array | Uint32Array | ArrayBuffer | DataView):
Promise<number>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

bytes

An array, typed array, array buffer or DataView object.

Return Value

The number of bytes sent to the network.

receive

TypeScript
receive(): Promise<Uint8Array>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Return Value

A byte array with data received from a socket.

Description

Receive data from a socket.

Common.Encoding

Virtual Serial Port Tools Documentation Device Script API

131

ITcpListener Interface

Description

This interface is implemented by a TCP listener object. Use the INetworkManager.createTcpListener
method to create one.

Declaration

TypeScript
interface ITcpListener {

 // Methods
 bind(port: number): Promise<void>;
 bind(host: string, port: number): Promise<void>;
 listen(): Promise<ITcpSocket>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ITcpListener Methods

bind

TypeScript
bind(port: number): Promise<void>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

port

Local TCP port number.

Description

Bind a TCP listener to a given local TCP port on all local interfaces.

bind

TypeScript
bind(host: string, port: number): Promise<void>;

C#
// This method is not available in managed environment

Virtual Serial Port Tools Documentation Device Script API

132

C++
// This method is not available in native environment

Parameters

host

Local host name/address.
port

Local TCP port number.

Description

Bind a TCP listener to a given local endpoint.

listen

TypeScript
listen(): Promise<ITcpSocket>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Return Value

When connection occurs, a connected TCP socket is returned.

Description

Listen for incoming connection. bind must be called before calling this method.

ITcpSocket

HTTP API
IHttpClient Interface

Description

This interface is implemented by an HTTP client object. A reference to this object is obtained using the
global http property.

Declaration

Virtual Serial Port Tools Documentation Device Script API

133

file:///C:/Users/alexb/AppData/Local/Temp/iglobals.html#http

TypeScript
interface IHttpClient {

 // Methods
 request(url: string, verb: string, options?: Partial<IHttpRequestOptions>):
Promise<IHttpResponse>;
 get(url: string, options?: Partial<IHttpRequestOptions>): Promise<IHttpResponse>;
 post(url: string, options?: Partial<IHttpRequestOptions>): Promise<IHttpResponse>;
 getString(url: string, accepts?: string, options?: Partial<IHttpRequestOptions>):
Promise<string>;
 getBlob(url: string, options?: Partial<IHttpRequestOptions>): Promise<Uint8Array>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHttpClient Methods

request

TypeScript
request(url: string, verb: string, options?: Partial<IHttpRequestOptions>):
Promise<IHttpResponse>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

url

Resource url.
verb

HTTP verb to use, such as “GET”, “POST”, “HEAD” and so on.
options

An optional request options. Allows you to set request body and headers.

Return Value

An HTTP response object.

Description

Make an HTTP request. All other methods of this interface eventually call this method. Prefer using
other methods unless you want to customize an HTTP request properties.

get

Virtual Serial Port Tools Documentation Device Script API

134

TypeScript
get(url: string, options?: Partial<IHttpRequestOptions>): Promise<IHttpResponse>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

url

Resource url.
options

An optional request options. Allows you to set request body and headers.

Return Value

An HTTP response object.

Description

Send an HTTP GET request and obtain a response. Calls the request method.

post

TypeScript
post(url: string, options?: Partial<IHttpRequestOptions>): Promise<IHttpResponse>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

url

Resource url.
options

An optional request options. Allows you to set request body and headers.

Return Value

An HTTP response object.

Description

Send an HTTP POST request and obtain a response. Calls the request method.

getString

Virtual Serial Port Tools Documentation Device Script API

135

TypeScript
getString(url: string, accepts?: string, options?: Partial<IHttpRequestOptions>):
Promise<string>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

url

Resource url.
accepts

A value of Accepts header. Defaults to application/json .
options

An optional request options. Allows you to set request body and headers.

Return Value

Contents of a remote resource as a string.

Description

Send an HTTP GET request and returns the result as a string. Calls the request method.

getBlob

TypeScript
getBlob(url: string, options?: Partial<IHttpRequestOptions>): Promise<Uint8Array>;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

url

Resource url.
options

An optional request options. Allows you to set request body and headers.

Return Value

Contents of a remote resource as a byte array.

Description

Send an HTTP GET request and returns the result as a string. Calls the request method.

Virtual Serial Port Tools Documentation Device Script API

136

IHttpRequestOptions Interface

Description

An object with this interface is usually created by a device script and passed to IHttpClient.request
method to customize its behavior.

Declaration

TypeScript
interface IHttpRequestOptions {
 // Properties
 headers?: string[] | IHttpHeader[];
 body?: string | number[] | Uint8Array;
 encoding?: UnicodeEncoding;
 mediaType?: string;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHttpRequestOptions Properties

headers

TypeScript
headers?: string[] | IHttpHeader[];

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HTTP headers, either as a string array or array of IHttpHeader objects. If string array is used, each string
must be of the form Name: Value .

body

TypeScript
body?: string | number[] | Uint8Array;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Virtual Serial Port Tools Documentation Device Script API

137

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/ihttpclient.html#request
file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/ihttpheader.html

HTTP request body, can be a string, array or a byte array

encoding

TypeScript
encoding?: UnicodeEncoding;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Encoding for string body. Used only if body is a string. Defaults to UTF8.

mediaType

TypeScript
mediaType?: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Body media type. Defaults to text/plain . Used only if body is a string. Defaults to UTF8.

IHttpHeader Interface

TypeScript
interface IHttpHeader {
 // Properties
 name: string;
 value: string;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHttpHeader Properties

name

Virtual Serial Port Tools Documentation Device Script API

138

TypeScript
name: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Header name.

value

TypeScript
value: string;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Header value.

IHttpResponse Interface

Description

This interface is implemented by an HTTP response object, returned by methods of IHttpClient interface.

Declaration

TypeScript
interface IHttpResponse {
 // Properties
 readonly statusCode: number;
 readonly isSuccessful: boolean;
 readonly content: Promise<string>;
 readonly blob: Promise<Uint8Array>;
 readonly stream: Promise<IInputStream>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IHttpResponse Properties

Virtual Serial Port Tools Documentation Device Script API

139

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/ihttpclient.html

statusCode

TypeScript
readonly statusCode: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HTTP status code.

isSuccessful

TypeScript
readonly isSuccessful: boolean;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

True if statusCode is between 200 and 299 inclusive.

content

TypeScript
readonly content: Promise<string>;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HTTP Response content, encoded as string.

blob

TypeScript
readonly blob: Promise<Uint8Array>;

Virtual Serial Port Tools Documentation Device Script API

140

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HTTP Response content, as a byte array.

stream

TypeScript
readonly stream: Promise<IInputStream>;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

HTTP Response content stream.

IInputStream Interface

Description

This interface is implemented by a stream object returned by the IHttpResponse.stream property.

Declaration

TypeScript
interface IInputStream {

 // Methods
 readChunk(maxSize: number): Promise<Uint8Array>;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IInputStream Methods

readChunk

TypeScript
readChunk(maxSize: number): Promise<Uint8Array>;

Virtual Serial Port Tools Documentation Device Script API

141

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/ihttpresponse.html#stream

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

maxSize

A maximum number of bytes to read.

Return Value

Read data as a byte array.

Description

Read a portion of data from the stream.

UnicodeEncoding Enumeration

Symbol Value Description
Utf8 0 Encode text as UTF8. This is the default value.
Utf16LE 1 Encode text as little-endian UTF16.
Utf16BE 2 Encode text as big-endian UTF16.

IOCTL_SCRIPTPORT_SET_PARAM Device I/O Request
An application that opens a virtual script port may communicate with a device script by sending a
custom device control request. The numeric value of this IOCTL is 0x82FFA0C0 .

It must pass two strings with the following encoding:

Custom Parameter Name

Data Encoding Description
String
length

32-bit little-endian integer Length of a string, in
characters

String data Array of 16-bit little-endian
wchar_t

String characters

Custom Parameter Value

Data Encoding Description
String
length

32-bit little-endian integer Length of a string, in
characters

String data Array of 16-bit little-endian
wchar_t

String characters

Sending this IOCTL results in calling of the IScriptDevice.setParam method.

Virtual Serial Port Tools Documentation Device Script API

142

file:///C:/Users/alexb/AppData/Local/Temp/7711f2e7-281b-49b7-a1c4-9e5e48c4f81e/port-api/iscriptdevice.html#setParam

Open Source Components
Virtual Serial Port Tools uses a number of open source components. This page lists all projects used and
provides their licenses. HHD Software expresses its enormous gratitude to the authors and contributors
of the following projects:

TypeScript

TypeScript is a language for application-scale JavaScript. TypeScript adds optional types to JavaScript
that support tools for large-scale JavaScript applications for any browser, for any host, on any OS.
TypeScript compiles to readable, standards-based JavaScript.
https://github.com/microsoft/TypeScript/blob/main/LICENSE.txt

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting
the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled
by, or are under common control with that entity. For the purposes of this definition, "control" means (i)
the power, direct or indirect, to cause the direction or management of such entity, whether by contract
or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source
form, including but not limited to compiled object code, generated documentation, and conversions to
other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the
License, as indicated by a copyright notice that is included in or attached to the work (an example is
provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived
from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any
modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to

Virtual Serial Port Tools Documentation Open Source Components

143

Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized
to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any
form of electronic, verbal, or written communication sent to the Licensor or its representatives, including
but not limited to communication on electronic mailing lists, source code control systems, and issue
tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and
improving the Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution
has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as
stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall terminate as of the date such litigation is
filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet the
following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this License; and

You must cause any modified files to carry prominent notices stating that You changed the files; and

You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that do
not pertain to any part of the Derivative Works; and

If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You
distribute must include a readable copy of the attribution notices contained within such NOTICE file,
excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source
form or documentation, if provided along with the Derivative Works; or, within a display generated by
the Derivative Works, if and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the License. You may add Your own
attribution notices within Derivative Works that You distribute, alongside or as an addendum to the
NOTICE text from the Work, provided that such additional attribution notices cannot be construed as
modifying the License. You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction, or distribution of Your
modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and
distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of

Virtual Serial Port Tools Documentation Open Source Components

144

this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides
the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the
Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts)
or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect,
special, incidental, or consequential damages of any character arising as a result of this License or out of
the use or inability to use the Work (including but not limited to damages for loss of goodwill, work
stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if
such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof,
You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other
liability obligations and/or rights consistent with this License. However, in accepting such obligations,
You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other
Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such
warranty or additional liability.

END OF TERMS AND CONDITIONS

ChakraCore

ChakraCore is a JavaScript engine with a C API you can use to add support for JavaScript to any C or C
compatible project. It can be compiled for x64 processors on Linux macOS and Windows. And x86 and
ARM for Windows only. It is a future goal to support x86 and ARM processors on Linux and ARM on
macOS.

ChakraCore is available under MIT License (https://github.com/chakra-
core/ChakraCore/blob/master/LICENSE.txt).

The MIT License (MIT)

Copyright (c) Microsoft Corporation
All rights reserved.
Copyright (c) 2021 ChakraCore Project Contributors. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

Virtual Serial Port Tools Documentation Open Source Components

145

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Boost

Boost provides free peer-reviewed portable C++ source libraries.
https://www.boost.org/users/license.html.

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Eigen3

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related
algorithms. https://www.mozilla.org/en-US/MPL/2.0/.

Virtual Serial Port Tools Documentation Open Source Components

146

	Table of Contents
	Virtual Serial Port Tools Documentation
	Virtual Bridges
	Alias Ports
	Shared Ports
	Split Ports
	TCP/IP Ports (RFC2217, RAW)
	Script Ports
	Remote Ports
	Pipe-connected Port
	Listening Port

	Supported Configurations
	Virtual Bridges
	Local Bridge
	Connection
	Operation
	Configuration Utility
	Custom Pin-Out

	Remote Bridge
	Connection
	Operation
	Configuration Utility
	Custom Pin-Out

	Bridge Pin-Outs
	Configuring Pin-Outs
	Validation

	Alias Ports
	Connection
	Operation
	Configuration Utility

	Shared Ports
	Connection
	Operation
	Configuration Utility

	Split Ports
	Connection
	Operation
	Configuration Utility

	TCP/IP Ports
	Connection
	Operation
	Configuration Utility

	Remote Ports
	Connection
	Operation
	Configuration Utility

	Script Ports
	Overview
	Script Structure
	Send Data Model
	Push Model
	Pull Model

	Receiving Data
	Device Script API
	Script Debugging

	Pipe Ports
	Connection
	Operation
	Configuration Utility

	Listening Ports
	Creation
	Operation
	Configuration Utility

	Sharing COM Ports over Network
	Remote Serial Ports Server
	TCP/IP Serial Ports Server
	Remote Serial Ports Server
	Windows Service Mode
	Stand-alone Mode
	Server Configuration Utility
	Command-Line Parameters

	TCP Serial Ports Server
	Windows Service Mode
	Stand-alone Mode
	TCP/IP Server Configuration Utility
	Command-Line Parameters
	Basic Syntax
	Advanced Syntax
	Options

	Configuration Utility
	Create Local Serial Bridges
	Bridge Creation Options

	Create Remote Serial Bridges
	Bridge Creation Options

	Bridge Creation Options
	Pin-Out Configuration
	Creating New Connection
	Deleting Connection

	Creating TCP Ports
	Creating TCP/IP Ports in Connecting Mode
	Creating TCP/IP Ports in Listening Mode

	Create Alias/Mapped Serial Ports
	Create Shared Serial Ports
	Create Split Serial Ports
	Create Script Serial Ports
	Port Settings Overrides
	Connect Remote Serial Port
	Create Pipe-connected Serial Ports
	Create Listening Serial Ports
	Exporting Configuration
	Compatibility Options

	Command-Line Utility
	Command-line Parameters

	Redistribution
	Installer Command-Line
	Unattended Installation
	Unattended Uninstallation

	License Installation
	Server Components Redistribution

	VSPT API
	Using from Native Code
	Using from C#
	Using from JavaScript
	Using from TypeScript
	ISerialPortLibrary Interface
	ISerialPortLibrary Properties
	compatibilityFlags

	ISerialPortLibrary Methods
	createAliasPort
	createBridgePort
	createSharedPort
	createScriptPort
	createTcpPort
	createRemotePort
	createPipePort
	getRemoteSharedPorts
	getRemoteSharedPortsJs
	getPorts
	getPortsJs
	getPortsJs
	getPortsJs
	getPortsJs
	getPortsJs
	getPortsJs
	getPortsJs
	getPortsJs
	createTimeoutsObject
	addListener
	removeListener
	installLicenseFile
	installLicenseInMemory

	ISerialPortLibraryListener Interface
	Declaration
	ISerialPortLibraryListener Methods
	added
	deleted

	IDevice Interface
	Declaration
	IDevice Properties
	port
	devicePath
	openingInfo

	IDevice Methods
	deleteDevice

	IConfigurableDevice Interface
	Declaration
	IConfigurableDevice Properties
	baudRate
	dataBits
	parity
	stopBits
	flowControl
	timeouts

	IAliasPortDevice Interface
	Declaration
	IAliasPortDevice Properties
	aliasPort
	targetDevicePath

	IBridgePortDevice Interface
	Declaration
	IBridgePortDevice Properties
	bridgePort
	bridgeServer
	isLocal
	isListening
	remoteLogin
	remoteDomain
	remotePassword
	securityDescriptor
	emulateBaudrate
	emulateTxOverflow
	crossoverProbability
	DTR
	DSR
	DCD
	RTS
	CTS
	RI

	IBridgePortDevice Methods
	restoreDefaultPins
	startListening

	ISharedPortDevice Interface
	Declaration
	ISharedPortDevice Properties
	sharedPort

	ITcpPortDevice Interface
	Declaration
	ITcpPortDevice Properties
	remoteHost
	remoteTcpPort
	localAddress
	localTcpPort
	protocol
	reconnectTimeout
	bufferSize

	IRemotePortDevice Interface
	Declaration
	IRemotePortDevice Properties
	remoteHost
	remotePort
	connectionTimeout
	connectionAttempts
	login
	password
	domain

	Example

	IRemotePortDescription Interface
	IRemotePortDescription Properties
	name
	port

	IPipePortDevice Interface
	Declaration
	IPipePortDevice Properties
	pipeName
	numberOfInstances
	outputBufferSize
	inputBufferSize
	defaultTimeout
	securityDescriptor

	IPipePortDevice Methods
	configureCreatePipe
	configureCreatePipe2
	configureConnectPipe

	IScriptPortDevice Interface
	Declaration
	IScriptPortDevice Properties
	scriptPath
	validationErrors
	logPath
	initializationValue

	IScriptPortDevice Methods
	setScriptFile
	setScriptText
	setScriptParam

	ITimeouts Interface
	Declaration
	ITimeouts Properties
	readIntervalTimeout
	readTotalTimeoutMultiplier
	readTotalTimeoutConstant
	writeTotalTimeoutMultiplier
	writeTotalTimeoutConstant

	IOpeningInfo Interface
	Declaration
	IOpeningInfo Properties
	baudRate
	byteSize
	parity
	stopBits
	processId
	processName

	SerialPortType Enumeration
	PortParity Enumeration
	PortStopBits Enumeration
	PortFlowControl Enumeration
	DestinationPins Enumeration
	CompatibilityFlags Enumeration
	TcpPortProtocol Enumeration

	Device Script API
	Global Object
	File System Object
	Network Object
	HTTP Object
	Global Interface
	Declaration
	IGlobals Properties
	port
	fs
	net
	http

	IGlobals Methods
	log
	delay
	async
	cancelAsync
	createDevice
	createDeviceAsync

	Port API
	IPort Interface
	Declaration
	IPort Methods

	IScriptDevice Interface
	Declaration
	IScriptDevice Methods

	Common.Encoding Enumeration
	Port.WriteAs Enumeration
	Port.EventMask Enumeration

	File system API
	IFileManager Interface
	Declaration
	IFileManager Properties
	IFileManager Methods

	IFile Interface
	Declaration
	IFile Properties
	IFile Methods

	FS.OpenMode Enumeration
	FS.Access Enumeration
	FS.Share Enumeration

	Network API
	INetworkManager Interface
	Declaration
	INetworkManager Methods

	ITcpSocket Interface
	Declaration

	IUdpSocket Interface
	Declaration
	IUdpSocket Methods

	ISocket Interface
	Declaration
	ISocket Methods

	ITcpListener Interface
	Declaration
	ITcpListener Methods

	HTTP API
	IHttpClient Interface
	Declaration
	IHttpClient Methods

	IHttpRequestOptions Interface
	Declaration
	IHttpRequestOptions Properties

	IHttpHeader Interface
	IHttpHeader Properties

	IHttpResponse Interface
	Declaration
	IHttpResponse Properties

	IInputStream Interface
	Declaration
	IInputStream Methods

	UnicodeEncoding Enumeration

	IOCTL_SCRIPTPORT_SET_PARAM Device I/O Request

	Open Source Components
	TypeScript
	ChakraCore
	Boost
	Eigen3

